[1] KARATAS M, BENLI A, ARSLAN F. The effects of kaolin and calcined kaolin on the durability and mechanical properties of self-compacting mortars subjected to high temperatures[J]. Construction and Building Materials, 2020, 265: 120300. [2] KRISHNAN S, GOPALA R D, BISHNOI S. Why low-grade calcined clays are the ideal for the production of limestone calcined clay cement (LC3)[J]. Calcined Clays for Sustainable Concrete, 2020: 125-130. [3] AYATI B, NEWPORT D, WONG H, et al. Low-carbon cements: potential for low-grade calcined clays to form supplementary cementitious materials[J]. Cleaner Materials, 2022, 5: 100099. [4] ZHENG D P, LIANG X W, CUI H Z, et al. Study of performances and microstructures of mortar with calcined low-grade clay[J]. Construction and Building Materials, 2022, 327: 126963. [5] 韩照信. 矿物差热分析[M]. 北京: 地质出版社, 1975. HAN Z X. Differential thermal analysis of minerals[M]. Beijing: Geological Press, 1975 (in Chinese). [6] BHARGAVA S K, GARG A, SUBASINGHE N D. In situ high-temperature phase transformation studies on pyrite[J]. Fuel, 2009, 88(6): 988-993. [7] 余兆南. 碳酸钙分解的试验研究[J]. 热能动力工程, 1997, 12(4): 278-280. YU Z N. An experimental study on the decomposition of calcium carbonate[J]. Journal of Engineering for Thermal Energy and Power, 1997, 12(4): 278-280 (in Chinese). [8] 卢尚青, 吴素芳. 碳酸钙热分解进展[J]. 化工学报, 2015, 66(8): 2895-2902. LU S Q, WU S F. Advances in calcium carbonate thermal decomposition[J]. CIESC Journal, 2015, 66(8): 2895-2902 (in Chinese). [9] 莫宗云, 刘益良, 王大光, 等. 偏高岭土-水泥基材料力学性能研究进展[J]. 硅酸盐通报, 2018, 37(3): 911-917. MO Z Y, LIU Y L, WANG D G, et al. Research progress on the physical properties of cement-based materials blended with metakaolin[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(3): 911-917 (in Chinese). [10] 彭 晖, 崔 潮, 蔡春声, 等. 偏高岭土活性的煅烧温度影响及测定方法研究[J]. 硅酸盐通报, 2014, 33(8): 2078-2084+2094. PENG H, CUI C, CAI C S, et al. Research on influence of calcination temperature on metakaolin reactivity and its determination[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(8): 2078-2084+2094 (in Chinese). [11] 简家成, 刘 峥, 赖丽燕, 等. 高岭土煅烧活化过程研究[J]. 中国粉体技术, 2015, 21(1): 52-57. JIAN J C, LIU Z, LAI L Y, et al. Study on process of calcination and activation of kaolin[J]. China Powder Science and Technology, 2015, 21(1): 52-57 (in Chinese). [12] 魏 博, 张一敏, 包申旭. 煅烧制度对高岭土活性及地聚物性能的影响[J]. 非金属矿, 2016, 39(4): 31-34. WEI B, ZHANG Y M, BAO S X. Effect of calcination conduction on activity of kaolin and property of geopolymer[J]. Non-Metallic Mines, 2016, 39(4): 31-34 (in Chinese). [13] KENNE DIFFO B B, ELIMBI A, CYR M, et al. Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers[J]. Journal of Asian Ceramic Societies, 2015, 3(1): 130-138. [14] TCHAKOUTÉ H K, MELELE S J K, DJAMEN A T, et al. Microstructural and mechanical properties of poly(sialate-siloxo) networks obtained using metakaolins from kaolin and halloysite as aluminosilicate sources: a comparative study[J]. Applied Clay Science, 2020, 186: 105448. [15] 闻 辂, 梁文雪, 章正刚, 等. 矿物红外光谱学[M]. 重庆: 重庆出版社, 1989. WEN L, LIANG W X, ZHANG Z G, et al. Mineral infrared spectroscopy[M]. Chongqing: Chongqing University Press, 1989 (in Chinese). [16] JOHNSTON C J, PEPPER R A, MARTENS W N, et al. Relationship between thermal dehydroxylation and aluminium extraction from a low-grade kaolinite: role of clay chemistry and crystallinity[J]. Hydrometallurgy, 2022, 214: 105967. [17] LIU Y Y, LEI S M, LIN M, et al. Assessment of pozzolanic activity of calcined coal-series kaolin[J]. Applied Clay Science, 2017, 143: 159-167. [18] TANWONGWAN W, WONGKITIKUN T, ONPECHT K, et al. Surface enhancement and structure formation of metakaolin from Thailand Kaolin on the various calcination temperature[J]. Materials Today: Proceedings, 2020, 23: 777-781. [19] 王美荣, 林铁松, 何培刚, 等. 热处理温度对偏高岭土活性的影响及其表征[J]. 硅酸盐通报, 2010, 29(2): 268-271. WANG M R, LIN T S, HE P G, et al. Influence of heat treatment temperature on activity of metakaolin and its characterization[J]. Bulletin of the Chinese Ceramic Society, 2010, 29(2): 268-271 (in Chinese). [20] ROCH G E, SMITHS M E, DRACHMAN S R. Solid state NMR characterization of the thermal transformation of an illite-rich clay[J]. Clays and Clay Minerals, 1998, 46(6): 694-704. [21] ALUJAS A, FERNÁNDEZ R, QUINTANA R, et al. Pozzolanic reactivity of low grade kaolinitic clays: influence of calcination temperature and impact of calcination products on OPC hydration[J]. Applied Clay Science, 2015, 108: 94-101. [22] ROCHA J, KLINOWSKI J. Solid-state NMR studies of the structure and reactivity of metakaolinite[J]. Angewandte Chemie International Edition in English, 1990, 29(5): 553-554. [23] 郭九皋, 何宏平, 王辅亚, 等. 高岭石-莫来石反应系列: 27Al和29Si MAS NMR研究[J]. 矿物学报, 1997, 17(3): 250-259. GUO J G, HE H P, WANG F Y, et al. Kaolinite-mullite reaction series: a 27Al and 29Si MAS NMR study[J]. Acta Mineralogica Sinica, 1997, 17(3): 250-259 (in Chinese). [24] MAIA A Á B, ANGÉLICA R S, DE FREITAS N R, et al. Use of 29Si and 27Al MAS NMR to study thermal activation of kaolinites from Brazilian Amazon kaolin wastes[J]. Applied Clay Science, 2014, 87: 189-196. [25] 李光辉, 姜 涛. 层状铝硅酸盐矿物热活化原理与应用[M]. 北京: 科学出版社, 2016. LI G H, JIANG T. Principle and application of thermal activation of layered aluminosilicate minerals[M]. Beijing: Science Press, 2016 (in Chinese). |