[1] MEHTA P K, MONTEIRO P J M. Concrete: microstructure, properties, and materials[M]. 3rd ed. New York: McGraw-Hill, 2006. [2] BESHR H, ALMUSALLAM A A, MASLEHUDDIN M. Effect of coarse aggregate quality on the mechanical properties of high strength concrete[J]. Construction and Building Materials, 2003, 17(2): 97-103. [3] SAOUMA V E, BROZ J J, BRÜHWILER E, et al. Effect of aggregate and specimen size on fracture properties of dam concrete[J]. Journal of Materials in Civil Engineering, 1991, 3(3): 204-218. [4] ASHRAF W B, NOOR M A. Performance-evaluation of concrete properties for different combined aggregate gradation approaches[J]. Procedia Engineering, 2011, 14: 2627-2634. [5] WANG H B, LI H, LIANG X, et al. Investigation on the mechanical properties and environmental impacts of pervious concrete containing fly ash based on the cement-aggregate ratio[J]. Construction and Building Materials, 2019, 202: 387-395. [6] ZIMBELMANN R. A contribution to the problem of cement-aggregate bond[J]. Cement and Concrete Research, 1985, 15(5): 801-808. [7] ZHOU X, XIE Y J, LONG G C, et al. DEM analysis of the effect of interface transition zone on dynamic splitting tensile behavior of high-strength concrete based on multi-phase model[J]. Cement and Concrete Research, 2021, 149: 106577. [8] 苏 捷, 史才军, 黄泽恩, 等. 粗骨料含量对超高性能混凝土抗压强度尺寸效应的影响[J]. 硅酸盐学报, 2021, 49(11): 2416-2422. SU J, SHI C J, HUANG Z E, et al. Scale effect on cubic compressive strength on ultra-high performance concrete containing coarse aggregate[J]. Journal of the Chinese Ceramic Society, 2021, 49(11): 2416-2422 (in Chinese). [9] 王江波, 丁俊升, 王晓东, 等. 粗骨料粒径对混凝土动态压缩行为的影响研究[J]. 爆炸与冲击, 2022, 42(2): 31-41. WANG J B, DING J S, WANG X D, et al. Effect of coarse aggregate size on the dynamic compression behavior of concrete[J]. Explosion and Shock Waves, 2022, 42(2): 31-41 (in Chinese). [10] 杜 敏, 陈凡红, 王素莉. 骨料粒径对混凝土劈裂抗拉强度尺寸效应影响的试验研究[J]. 建筑结构, 2022, 52(13): 128-132+127. DU M, CHEN F H, WANG S L. Experimental study on the effect of aggregate size on the size effect of concrete splitting tensile strength[J]. Building Structure, 2022, 52(13): 128-132+127 (in Chinese). [11] SCRIVENER K L, GARTNER E M. Microstructural gradients in cement paste around aggregate particles[J]. MRS Online Proceedings Library, 2011, 114(1): 77-85. [12] 杜向琴, 李宗利. 考虑界面过渡区非均质性的混凝土弹性模量预测[J]. 长江科学院院报, 2019, 36(8): 153-158+164. DU X Q, LI Z L. A prediction model for elastic modulus of concrete considering the inhomogeneity of interfacial transition zone[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(8): 153-158+164 (in Chinese). [13] LUTZ M P, ZIMMERMAN R W. Effect of the interphase zone on the bulk modulus of a particulate composite[J]. Journal of Applied Mechanics, 1996, 63(4): 855-861. [14] 徐 晶, 王先志. 纳米二氧化硅对混凝土界面过渡区的改性机制及其多尺度模型[J]. 硅酸盐学报, 2018, 46(8): 1053-1058. XU J, WANG X Z. Effect of nano-silica modification on interfacial transition zone in concrete and its multiscale modelling[J]. Journal of the Chinese Ceramic Society, 2018, 46(8): 1053-1058 (in Chinese). [15] 李晓光, 王攀奇, 张 郁, 等. 再生骨料混凝土毛细管负压和界面过渡区研究[J]. 建筑材料学报, 2022, 25(6): 572-576. LI X G, WANG P Q, ZHANG Y, et al. Study on capillary negative pressure and interfacial transition zone of regenerated aggregate concrete[J]. Journal of Building Materials, 2022, 25(6): 572-576 (in Chinese). [16] 崔 溦, 魏 杰, 李国栋. 考虑粗骨料破碎的混凝土力学特性细观模拟[J]. 东南大学学报(自然科学版), 2022, 52(1): 50-56. CUI W, WEI J, LI G D. Meso-simulation of mechanical properties of concrete considering coarse aggregate crushing[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(1): 50-56 (in Chinese). [17] 王江洋, 钱振东, 汪林兵. 沥青混合料裂纹发展过程的颗粒流模拟[J]. 公路交通科技, 2015, 32(3): 7-13. WANG J Y, QIAN Z D, WANG L B. Particle flow simulation of crack development in asphalt mixture[J]. Journal of Highway and Transportation Research and Development, 2015, 32(3): 7-13 (in Chinese). [18] 戎虎仁, 王海龙, 曹海云, 等. 裂纹损伤混凝土力学性质试验与PFC模拟研究[J]. 混凝土, 2018(3): 8-12. RONG H R, WANG H L, CAO H Y, et al. Experimental study on mechanical properties of concrete with crack damage and PFC simulation[J]. Concrete, 2018(3): 8-12 (in Chinese). [19] 王一阳, 任会兰, 宋水舟, 等. 基于颗粒流法研究混凝土的劈裂拉伸破坏特性[J]. 北京理工大学学报, 2022, 42(3): 242-250. WANG Y Y, REN H L, SONG S Z, et al. Study on the splitting tensile failure characteristics of concrete based on the particle flow method[J]. Transactions of Beijing Institute of Technology, 2022, 42(3): 242-250 (in Chinese). [20] 李文霞, 张飞强. 混凝土界面过渡区力学性质的非均质性对混凝土强度和损伤演化的影响[J]. 水电能源科学, 2020, 38(11): 116-119. LI W X, ZHANG F Q. Effect of heterogeneity of mechanical properties of concrete interfacial transition zone on concrete strength and damage evolution[J]. Water Resources and Power, 2020, 38(11): 116-119 (in Chinese). [21] WANG P, GAO N, JI K, et al. DEM analysis on the role of aggregates on concrete strength[J]. Computers and Geotechnics, 2020, 119: 103290. [22] WANG X, ZHANG H R, YIN Z Y, et al. Deep-learning-enhanced model reconstruction of realistic 3D rock particles by intelligent video tracking of 2D random particle projections[J]. Acta Geotechnica, 2022: 1-24. [23] ZHOU X, XIE Y J, LONG G C, et al. Effect of surface characteristics of aggregates on the compressive damage of high-strength concrete based on 3D discrete element method[J]. Construction and Building Materials, 2021, 301: 124101. [24] 朱海燕, 党益珂, 刘清友, 等. 凹土棒石的物理力学性质实验及数值模拟研究[J]. 中国科学: 物理学 力学 天文学, 2019, 49(12): 107-117. ZHU H Y, DANG Y K, LIU Q Y, et al. Experimental and numerical simulation research of the physical and mechanical properties of Attapulgite clay[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(12): 107-117 (in Chinese).[25] LIAO K Y, CHANG P K, PENG Y N, et al. A study on characteristics of interfacial transition zone in concrete[J]. Cement and Concrete Research, 2004, 34(6): 977-989. [26] SUCHORZEWSKI J, TEJCHMAN J, NITKA M. Experimental and numerical investigations of concrete behaviour at meso-level during quasi-static splitting tension[J]. Theoretical and Applied Fracture Mechanics, 2018, 96: 720-739. [27] YANG S Q, HUANG Y H. Experiment and particle flow simulation on crack coalescence behavior of sandstone specimens containing double holes and a single fissure[J]. Journal of Basic Science and Engineering, 2014, 22(3): 584-597. [28] BAYKASOĞLU A, GÜLLÜ H, ÇANAKÇ H, et al. Prediction of compressive and tensile strength of limestone via genetic programming[J]. Expert Systems with Applications, 2008, 35(1/2): 111-123. |