[1] SALAMA A, HAWILEH R, ABDALLA J. Performance of externally strengthened RC beams with side-bonded CFRP sheets[J]. Composite Structures, 2019, 212: 281-290. [2] SIDDIKA A, AL MAMUN M A, ALYOUSEF R, et al. Strengthening of reinforced concrete beams by using fiber-reinforced polymer composites: a review[J]. Journal of Building Engineering, 2019, 25: 100798. [3] 范向前, 刘决丁. 不同FRP增强混凝土梁断裂性能试验研究[J]. 建筑材料学报, 2020, 23(5): 1093-1097+1103. FAN X Q, LIU J D. Experimental study on fracture behavior of different kinds of FRP reinforced concrete beam[J]. Journal of Building Materials, 2020, 23(5): 1093-1097+1103 (in Chinese). [4] 喻 林, 王凤霞, 蒋林华, 等. 碳纤维加固混凝土的黏结性能研究[J]. 工业建筑, 2010, 40(10): 103-105+110. YU L, WANG F X, JIANG L H, et al. Research on adhesive property of concrete stregthened with cfrp[J]. Industrial Construction, 2010, 40(10): 103-105+110 (in Chinese). [5] 李趁趁. FRP加固混凝土结构耐久性试验研究[D]. 大连: 大连理工大学, 2006. LI C C. Experimental investigation on durability of FRP strengthened concrete structure[D]. Dalian: Dalian University of Technology, 2006 (in Chinese). [6] YU Z C, ZHOU A, NING W Y, et al. Molecular insights into the weakening effect of water on cement/epoxy interface[J]. Applied Surface Science, 2021, 553: 149493. [7] WANG P, QIAO G, ZHANG Y, et al. Molecular dynamics simulation study on interfacial shear strength between calcium-silicate-hydrate and polymer fibers[J]. Construction and Building Materials, 2020, 257: 119557. [8] 乔 岗, 王 攀, 杨 林, 等. PVA掺杂对离子在C-S-H界面吸附行为影响的分子模拟研究[J]. 青岛理工大学学报, 2020, 41(5): 17-21+36+7. QIAO G, WANG P, YANG L, et al. Effect of PVA doping on the adsorption property of ions at C-S-H interface: a molecular dynamics simulation study[J]. Journal of Qingdao University of Technology, 2020, 41(5): 17-21+36+7 (in Chinese). [9] SHEN W G, ZHANG W S, WANG J, et al. The microstructure formation of C-S-H in the HPC paste from nano-scale feature [J]. Journal of Sustainable Cement-Based Materials, 2019, 8(4): 199-213. [10] CASTELLOTE M, ANDRADE C, TURRILLAS X, et al. Accelerated carbonation of cement pastes in situ monitored by neutron diffraction[J]. Cement and Concrete Research, 2008, 38(12): 1365-1373. [11] FANG Y F, CHANG J. Microstructure changes of waste hydrated cement paste induced by accelerated carbonation[J]. Construction and Building Materials, 2015, 76: 360-365. [12] HOU D S, YANG Q R, WANG P, et al. Unraveling disadhesion mechanism of epoxy/CSH interface under aggressive conditions[J]. Cement and Concrete Research, 2021, 146: 106489. [13] BAHRAQ A A, OBOT I B, AL-OSTA M A, et al. Molecular-level investigation on the effect of surface moisture on the bonding behavior of cement-epoxy interface[J]. Journal of Building Engineering, 2022, 61: 105299. [14] 杨清瑞, 金祖权, 王 攀, 等. 温度影响epoxy/C-S-H界面黏结性能的分子动力学模拟[J]. 建筑材料学报, 2022, 25(10): 1086-1091. YANG Q R, JIN Z Q, WANG P, et al. Molecular dynamics simulation of temperature-influenced epoxy/C-S-H interfacial bonding properties[J]. Journal of Building Materials, 2022, 25(10): 1086-1091 (in Chinese). [15] DANESHVAR D, DEIX K, ROBISSON A. Effect of casting and curing temperature on the interfacial bond strength of epoxy bonded concretes[J]. Construction and Building Materials, 2021, 307: 124328. [16] JEYRANPOUR F, ALAHYARIZADEH G, ARAB B. Comparative investigation of thermal and mechanical properties of cross-linked epoxy polymers with different curing agents by molecular dynamics simulation[J]. Journal of Molecular Graphics and Modelling, 2015, 62: 157-164. [17] JIAN W, LAU D. Creep performance of CNT-based nanocomposites: a parametric study[J]. Carbon, 2019, 153: 745-756. [18] HOU D, MA H Y, ZHU Y, et al. Calcium silicate hydrate from dry to saturated state: structure, dynamics and mechanical properties[J]. Acta Materialia, 2014, 67: 81-94. [19] PELLENQ R J, KUSHIMA A, SHAHSAVARI R, et al. A realistic molecular model of cement hydrates[J]. Proceedings of the National Academy of Sciences, 2009, 106 (38): 16102-16107. [20] ALLEN A J, THOMAS J J, JENNINGS H M. Composition and density of nanoscale calcium-silicate-hydrate in cement[J]. Nature Materials, 2007, 6(4): 311-6. [21] TAM L H, LAU D. A molecular dynamics investigation on the cross-linking and physical properties of epoxy-based materials[J]. RSC Advances, 2014: 4(62): 33074-33081. [22] ZHANG Q Y, REN H, WANG W W, et al. Molecular simulation of oligomer inhibitors for calcite scale[J]. Particuology, 2012, 10(3): 266-275. [23] HOU D S, YANG Q R, JIN Z Q, et al. Enhancing interfacial bonding between epoxy and CSH using graphene oxide: an atomistic investigation[J]. Applied Surface Science, 2021, 568: 150896. [24] WANG P, YANG Q R, WANG M H, et al. Theoretical investigation of epoxy detachment from C-S-H interface under aggressive environment[J]. Construction and Building Materials, 2020, 264: 120232. |