[1] 章国涛, 郑 勇, 杨晓丽, 等. Li2ZnTi3O8基微波介质陶瓷的研究进展[J]. 材料导报, 2016, 30(9): 127-131. ZHANG G T, ZHENG Y, YANG X L, et al. Research progress in Li2ZnTi3O8 microwave dielectric ceramic[J]. Materials Reports, 2016, 30(9): 127-131 (in Chinese). [2] PENG R, LI Y X, PENG Y, et al. Sintering and microwave dielectric properties of LiCaPO4 ceramic: experiment and first principle calculation[J]. Journal of Materials Research and Technology, 2020, 9(6): 13988-13993. [3] 刘 锦, 梁炳亮, 张建军, 等. 微波烧结微波介质陶瓷的研究进展[J]. 材料导报, 2022, 36(3): 136-145. LIU J, LIANG B L, ZHANG J J, et al. Research progress on microwave dielectric ceramics prepared via microwave sintering[J]. Materials Reports, 2022, 36(3): 136-145 (in Chinese). [4] 郑 宇, 刘文俊, 余海洲, 等. 低介电常数钒酸盐微波介质陶瓷的研究进展[J]. 中国陶瓷, 2021, 57(4): 1-8. ZHENG Y, LIU W J, YU H Z, et al. Research progress of vanadate microwave dielectric ceramics with low dielectric constant[J]. China Ceramics, 2021, 57(4): 1-8 (in Chinese). [5] 吕学鹏, 郑 勇, 周 斌, 等. 微波介质陶瓷低温共烧技术的研究进展[J]. 材料导报, 2012, 26(23): 146-149+154. LU X P, ZHENG Y, ZHOU B, et al. Research progress in low temperature co-firing technology of microwave dielectric ceramics[J]. Materials Reports, 2012, 26(23): 146-149+154 (in Chinese). [6] GOÑI A, LEZAMA L, BARBERIS G E, et al. Magnetic properties of the LiMPO4 (M=Co, Ni) compounds[J]. Journal of Magnetism and Magnetic Materials, 1996, 164(1/2): 251-255. [7] 陈 康, 郑 勇, 董作为, 等. 固有烧结温度低的低介电常数陶瓷材料研究进展[J]. 材料导报, 2017, 31(s2): 115-120+124. CHEN K, ZHENG Y, DONG Z W, et al. Research progress on low permittivity ceramic materials with low intrinsic sintering temperature[J]. Materials Reports, 2017, 31(s2): 115-120+124 (in Chinese). [8] THOMAS D, SEBASTIAN M T. Temperature-compensated LiMgPO4: a new glass-free low-temperature cofired ceramic[J]. Journal of the American Ceramic Society, 2010, 93(11): 3828-3831. [9] XIAO E C, CAO Z K, LI J Z, et al. Crystal structure, dielectric properties, and lattice vibrational characteristics of LiNiPO4 ceramics sintered at different temperatures[J]. Journal of the American Ceramic Society, 2020, 103(4): 2528-2539. [10] PENG R, LI Y X, SU H, et al. The modification of sintering and microwave dielectric properties of Mn2+ doped LiZnPO4 ceramic[J]. Journal of Materials Research and Technology, 2020, 9(3): 4994-5006. [11] ZHANG P, SUN K X, WU S X, et al. Microwave dielectric properties of low temperature co-fired ceramics LiMg1-xAxPO4 (A=Mn, Ca, 0.02≤x≤0.08)[J]. Materials Letters, 2019, 255: 126565. [12] SHI F, XIAO E C. Sintering behavior, crystal structures, phonon characteristics and dielectric properties of LiZnPO4 microwave dielectric ceramics[J]. Materials Chemistry and Physics, 2021, 259: 124139. [13] ZHANG S, LI L X, LV X S. Synthesis and characterization of a novel Mg3(PO4)2 ceramic with low dielectric constant[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(2): 1620-1623. [14] FENG Z B, WANG G, KIMURA H, et al. Sintering behavior, microwave dielectric properties, and chemical bond features of novel low-permittivity Cu3(PO4)2 ceramic with low-loss[J]. Ceramics International, 2022, 48(18): 26904-26910. [15] WANG X, LI L, HONG W B, et al. Preparation and microwave dielectric properties of BPO4 ceramics with ultra-low dielectric constant[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(5): 6660-6667. [16] 胡 杰, 吕学鹏, 张 杰, 等. 微波介质陶瓷制备技术研究进展[J]. 信息记录材料, 2018, 19(11): 6-8. HU J, LV X P, ZHANG J, et al. Research progress in the preparation technology of microwave dielectric ceramics[J]. Information Recording Materials, 2018, 19(11): 6-8 (in Chinese). [17] 张小娜, 李小龙. 现代测试技术在微波介质陶瓷研究中的应用[J]. 中国陶瓷, 2020, 56(10): 13-19. ZHANG X N, LI X L. Application of modern testing technology in the study of microwave dielectric ceramics[J]. China Ceramics, 2020, 56(10): 13-19 (in Chinese). [18] ZHANG P, TIAN X, HAO M M, et al. The crystal structure, sintering behavior and microwave dielectric properties of BiZn2PO6 ceramics for ULTCC applications[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(7): 3738-3747. [19] HAO S Z, ZHOU D, LI W B, et al. Microwave dielectric properties of BiCu2PO6 ceramics[J]. Journal of Electronic Materials, 2017, 46(11): 6241-6245. [20] CHEN X Q, LI H, ZHANG P C, et al. Microwave dielectric properties of Co2P2O7 ceramics[J]. Ceramics International, 2021, 47(2): 1980-1985. [21] XIE H D, CHEN C, SU B B, et al. Microwave dielectric properties of low εr BaZnP2O7 ceramic[J]. Materials Letters, 2016, 166: 167-170. [22] GUO T, LI Y X, WANG Y L, et al. Effect of Sr/P ratio on the microwave dielectric properties of Sr2P2O7 ceramics[J]. Ferroelectrics, 2010, 407(1): 84-92. [23] WANG Y N, CHEN H Z, BIAN J J. Microstructure, sintering behavior and microwave dielectric properties of the Mn-doped TiP2O7[J]. Ceramics International, 2015, 41(9): 10670-10674. [24] WANG Y N, BIAN J J. Effects of P2O5/TiO2 ratio on the sintering behavior and microwave dielectric properties of TiP2O7[J]. Ceramics International, 2015, 41(3): 4683-4687. [25] PENG R, LI Y X, SU H, et al. Experiment and calculation: the Li(Zn, Mn)PO4 solid solution ceramics with low dielectric constant, high quality factor, and low densification temperature[J]. Journal of Alloys and Compounds, 2020, 842: 155709. [26] PENG R, LU Y C, TAO Z H, et al. Improved microwave dielectric properties and sintering behavior of LiZnPO4 ceramic by Ni2+-ion doping based on first-principle calculation and experiment[J]. Ceramics International, 2020, 46(8): 11021-11032. [27] DONG Z W, ZHENG Y, CHENG P, et al. Microwave dielectric properties of Li(Mg1-xNix)PO4 ceramics for LTCC applications[J]. Ceramics International, 2014, 40(8): 12983-12988. [28] DONG Z W, ZHENG Y, CHENG P, et al. Preparation and microwave dielectric properties of Li(Mg1-xCox)PO4 ceramics for low-temperature cofired ceramic applications[J]. Ceramics International, 2014, 40(9): 14865-14869. [29] LEI W, ZOU Z Y, CHEN Z H, et al. Controllable τf value of barium silicate microwave dielectric ceramics with different Ba/Si ratios[J]. Journal of the American Ceramic Society, 2018, 101(1): 25-30. [30] SONG X Q, LU W Z, WANG X C, et al. Sintering behaviour and microwave dielectric properties of BaAl2-2x(ZnSi)xSi2O8 ceramics[J]. Journal of the European Ceramic Society, 2018, 38(4): 1529-1534. [31] LAI Y M, TANG X L, HUANG X, et al. Phase composition, crystal structure and microwave dielectric properties of Mg2-xCuxSiO4 ceramics[J]. Journal of the European Ceramic Society, 2018, 38(4): 1508-1516. [32] LAI Y M, SU H, WANG G, et al. Low-temperature sintering of microwave ceramics with high Qf values through LiF addition[J]. Journal of the American Ceramic Society, 2018: jace.16086. [33] XIA C C, JIANG D H, CHEN G H, et al. Microwave dielectric ceramic of LiZnPO4 for LTCC applications[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(16): 12026-12031. [34] TANG B, GUO X, YU S Q, et al. The shrinking process and microwave dielectric properties of BaCu(B2O5)-added 0.85BaTi4O9-0.15BaZn2Ti4O11 ceramics[J]. Materials Research Bulletin, 2015, 66: 163-168. [35] TANG X, YANG H, ZHANG Q L, et al. Low-temperature sintering and microwave dielectric properties of ZnZrNb2O8 ceramics with BaCu(B2O5) addition[J]. Ceramics International, 2014, 40(8): 12875-12881. [36] GUO T, GUO Y, HUI Z Z, et al. SrZn2(PO4)2-TiO2 composite microwave dielectric ceramics with wide tunability range for temperature coefficient of resonant frequency[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(15): 11515-11520. [37] ZHOU D, RANDALL C A, PANG L X, et al. Microwave dielectric properties of Li2WO4 ceramic with ultra-low sintering temperature[J]. Journal of the American Ceramic Society, 2011, 94(2): 348-350. [38] THOMAS D, ABHILASH P, SEBASTIAN M T. Casting and characterization of LiMgPO4 glass free LTCC tape for microwave applications[J]. Journal of the European Ceramic Society, 2013, 33(1): 87-93. [39] BIAN J J, DING Y M. A new glass-free LTCC microwave ceramic-(1-x)Li2.08TiO3+xLiF[J]. Materials Research Bulletin, 2014, 49: 245-249. [40] WANG Z, BIAN J J. Low temperature sintering and microwave dielectric properties of Ba3(PO4)2-BaWO4 composite ceramics[J]. Ceramics International, 2014, 40(6): 8507-8511. |