[1] 王家滨, 牛荻涛. 喷射混凝土渗透性、孔结构和力学性能关系研究[J]. 硅酸盐通报, 2018, 37(7): 2101-2108. WANG J B, NIU D T. Relationship among permeability, pore structure and mechanical properties of shotcrete[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(7): 2101-2108 (in Chinese). [2] 王红喜, 陈友治, 丁庆军. 喷射混凝土的现状与发展[J]. 岩土工程技术, 2004, 18(1): 51-54. WANG H X, CHEN Y Z, DING Q J. Modern shotcrete condition and development[J]. Geotechnical Engineering Technique, 2004, 18(1): 51-54 (in Chinese). [3] BERNARD E S. Changes in long-term performance of fibre reinforced shotcrete due to corrosion and embrittlement[J]. Tunnelling and Underground Space Technology, 2020, 98: 103335. [4] LIU G M, CHENG W M, CHEN L J, et al. Rheological properties of fresh concrete and its application on shotcrete[J]. Construction and Building Materials, 2020, 243: 118180. [5] CUI S A, LIU P, LI Z H, et al. Shotcrete performance-loss due to seepage and temperature coupling in cold-region tunnels[J]. Construction and Building Materials, 2020, 246: 118488. [6] SAHA A S, AMANAT K M. Rebound hammer test to predict in situ strength of concrete using recycled concrete aggregates, brick chips and stone chips[J]. Construction and Building Materials, 2021, 268: 121088. [7] 童小根, 张凯峰, 孟 刚, 等. 机制砂-石屑复合细集料对不同强度等级混凝土性能的影响[J]. 硅酸盐通报, 2021, 40(4): 1205-1212+1227. TONG X G, ZHANG K F, MENG G, et al. Influence of manufactured sand-stone chips composite fine aggregate on properties of different strength grade concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(4): 1205-1212+1227 (in Chinese). [8] 关业程, 孙江涛, 李志堂, 等. C25石屑湿喷混凝土的制备及其性能研究[J]. 武汉理工大学学报, 2020, 42(4): 33-39. GUAN Y C, SUN J T, LI Z T, et al. Study on preparation and performance of C25 stone chip wet-mix shotcrete[J]. Journal of Wuhan University of Technology, 2020, 42(4): 33-39 (in Chinese). [9] SHEN W G, et al. Characterization of manufactured sand: particle shape, surface texture and behavior in concrete[J]. Construction and Building Materials, 2016, 114: 595-601. [10] 赵明亮, 黄 赟, 费洗非, 等. 石屑对混凝土工作性及强度的影响试验研究[J]. 混凝土与水泥制品, 2019(7): 4-8. ZHAO M L, HUANG Y, FEI X F, et al. Experimental research on the effect of stone chips on workability and strength of concrete[J]. China Concrete and Cement Products, 2019(7): 4-8 (in Chinese). [11] BUTER R, WEMMENHOVE A. Automotive waterborne surfacer with improved stone-chip resistance[J]. Progress in Organic Coatings, 1993, 22(1/2/3/4): 83-105. [12] LI L, WU A X, WANG Y M, et al. Mechanism of wet shotcrete interacting with rock in support systems[J]. Journal of Central South University, 2013, 20(3): 821-829. [13] 张俊儒, 王 卫, 崔 耀, 等. 粉煤灰掺量对喷射混凝土耐久性的影响试验[J]. 隧道建设, 2016, 36(11): 1325-1331. ZHANG J R, WANG W, CUI Y, et al. Test of influence of fly ash content on durability of shotcrete[J]. Tunnel Construction, 2016, 36(11): 1325-1331 (in Chinese). [14] 魏耀宇. 高耐久性喷射混凝土的研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. WEI Y Y. Research on shotcrete with high durability[D]. Harbin: Harbin Institute of Technology, 2017 (in Chinese). [15] 王志杰, 王 奇, 孟祥磊, 等. 纤维喷射混凝土的耐久性试验研究[J]. 混凝土, 2014(1): 93-97. WANG Z J, WANG Q, MENG X L, et al. Research on the durability of fiber reinforced shotcrete[J]. Concrete, 2014(1): 93-97 (in Chinese). [16] LIU J, AN R, JIANG Z L, et al. Effects of W/B ratio, fly ash, limestone calcined clay, seawater and sea-sand on workability, mechanical properties, drying shrinkage behavior and micro-structural characteristics of concrete[J]. Construction and Building Materials, 2022, 321: 126333. [17] 朱贤宇, 杨生虎, 翟胜田, 等. 洞渣湿喷混凝土的制备与性能研究[J]. 硅酸盐通报, 2020, 39(5): 1444-1450. ZHU X Y, YANG S H, ZHAI S T, et al. Research on preparation and performance of wet shotcrete with cave slag[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(5): 1444-1450 (in Chinese). [18] ZHAO G W, LI J P, SHI M, et al. Degradation mechanisms of cast-in-situ concrete subjected to internal-external combined sulfate attack[J]. Construction and Building Materials, 2020, 248: 118683. [19] 孙道胜, 程星星, 刘开伟, 等. 硫酸盐侵蚀下石膏的形成及破坏机制研究现状[J]. 材料导报, 2018, 32(23): 4135-4141. SUN D S, CHENG X X, LIU K W, et al. Current knowledge of deterioration mechanism of gypsum formation during sulfate attack[J]. Materials Review, 2018, 32(23): 4135-4141 (in Chinese). [20] WANG D Z, ZHOU X M, FU B, et al. Chloride ion penetration resistance of concrete containing fly ash and silica fume against combined freezing-thawing and chloride attack[J]. Construction and Building Materials, 2018, 169: 740-747. [21] 秦 力, 丁婧楠, 朱劲松. 高掺量粉煤灰和矿渣高强混凝土抗渗性和抗冻性试验[J]. 农业工程学报, 2017, 33(6): 133-139. QIN L, DING J N, ZHU J S. Experiment on anti-permeability and frost resistance of high strength concrete with high-ratio of fly ash and slag[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6): 133-139 (in Chinese). [22] WANG K, GUO J J, LIU X J, et al. Effect of dry-wet ratio on pore-structure characteristics of fly ash concrete under sulfate attack[J]. Materials and Structures, 2021, 54(3): 100. [23] 彭德新. 水灰比和粉煤灰掺量对混凝土抗硫酸盐侵蚀性能的影响[J]. 湖南交通科技, 2014, 40(2): 67-68+162. PENG D X. Influence of water cement ratio and fly ash content on sulfate resistance of concrete[J]. Hunan Communication Science and Technology, 2014, 40(2): 67-68+162 (in Chinese). [24] 吴中伟. 混凝土科学技术近期发展方向的探讨[J]. 硅酸盐学报, 1979, 7(3): 262-270. WU Z W. An approach to the recent trends of concrete science and technology[J]. Journal of the Chinese Ceramic Society, 1979, 7(3): 262-270 (in Chinese). [25] UTHAMAN S, VISHWAKARMA V, GEORGE R P, et al. Enhancement of strength and durability of fly ash concrete in seawater environments: synergistic effect of nanoparticles[J]. Construction and Building Materials, 2018, 187: 448-459. |