硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (3): 1037-1047.
所属专题: 陶瓷
王伟杰, 詹明哲, 朱星宇, 刘长春, 吴广鑫, 陈浩, 杨文杰
收稿日期:
2022-10-24
修订日期:
2022-12-14
出版日期:
2023-03-15
发布日期:
2023-03-31
通信作者:
杨文杰,博士,副教授。E-mail:37136706@qq.com
作者简介:
王伟杰(1999—),男,硕士研究生。主要从事碳材料资源化的研究。E-mail:wwjzya@163.com
基金资助:
WANG Weijie, ZHAN Mingzhe, ZHU Xingyu, LIU Changchun, WU Guangxin, CHEN Hao, YANG Wenjie
Received:
2022-10-24
Revised:
2022-12-14
Online:
2023-03-15
Published:
2023-03-31
摘要: 氧化插层是目前制备氧化石墨烯(GO)类单层/多层材料的主流方法之一,其关键步骤为氧化剂和插层剂的选择及工艺的匹配。传统工艺主要采用Hummers法,存在氮氧化物排放量大、环境危害大、安全性差等问题,本文综述了近年来氧化插层制备氧化石墨烯的研究进展,重点阐述了绿色氧化剂、插层剂的研究进展及相应工艺的改良与创新,系统分析了不同试剂的反应机理及应用效果,旨在寻找绿色环保、价格低廉、更适合工业化的制备方法。
中图分类号:
王伟杰, 詹明哲, 朱星宇, 刘长春, 吴广鑫, 陈浩, 杨文杰. 绿色氧化插层体系在石墨膨化剥离中的应用研究进展[J]. 硅酸盐通报, 2023, 42(3): 1037-1047.
WANG Weijie, ZHAN Mingzhe, ZHU Xingyu, LIU Changchun, WU Guangxin, CHEN Hao, YANG Wenjie. Research Progress of Green Oxidation Intercalation System in Graphite Expansion and Stripping[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(3): 1037-1047.
[1] VU M C, THI THIEU N A, LIM J H, et al. Ultrathin thermally conductive yet electrically insulating exfoliated graphene fluoride film for high performance heat dissipation[J]. Carbon, 2020, 157: 741-749. [2] LIU Y, DUAN X D, HUANG Y, et al. Two-dimensional transistors beyond graphene and TMDCs[J]. Chemical Society Reviews, 2018, 47(16): 6388-6409. [3] PARK I J, KIM T I, YOON T, et al. Flexible and transparent graphene electrode architecture with selective defect decoration for organic light-emitting diodes[J]. Advanced Functional Materials, 2018, 28(10): 1704435. [4] EL-KADY M F, SHAO Y L, KANER R B. Graphene for batteries, supercapacitors and beyond[J]. Nature Reviews Materials, 2016, 1(7): 16033. [5] YUAN W Y, ZHANG Y N, CHENG L F, et al. The applications of carbon nanotubes and graphene in advanced rechargeable lithium batteries[J]. Journal of Materials Chemistry A, 2016, 4(23): 8932-8951. [6] JUSTINO C I L, GOMES A R, FREITAS A C, et al. Graphene based sensors and biosensors[J]. TrAC Trends in Analytical Chemistry, 2017, 91: 53-66. [7] RIAD K B, HOA S V, WOOD-ADAMS P M. Photocuring graphene oxide liquid crystals for high-strength structural materials[J]. ACS Omega, 2022, 7(24): 21192-21198. [8] LOH K P, TONG S W, WU J S. Graphene and graphene-like molecules: prospects in solar cells[J]. Journal of the American Chemical Society, 2016, 138(4): 1095-1102. [9] DING J H, ZHAO H R, JI D, et al. Ultrafast molecular sieving through functionalized graphene membranes[J]. Nanoscale, 2019, 11(9): 3896-3904. [10] LI X Y, QU J K, XIE H W, et al. An electro-deoxidation approach to co-converting antimony oxide/graphene oxide to antimony/graphene composite for sodium-ion battery anode[J]. Electrochimica Acta, 2020, 332: 135501. [11] HOU Y G, LV S H, LIU L P, et al. High-quality preparation of graphene oxide via the Hummers’ method: understanding the roles of the intercalator, oxidant, and graphite particle size[J]. Ceramics International, 2020, 46(2): 2392-2402. [12] CASALLAS CAICEDO F M, VERA LÓPEZ E, AGARWAL A, et al. Synthesis of graphene oxide from graphite by ball milling[J]. Diamond and Related Materials, 2020, 109: 108064. [13] ROSILLO-LOPEZ M, SALZMANN C G. Detailed investigation into the preparation of graphene oxide by dichromate oxidation[J]. ChemistrySelect, 2018, 3(24): 6972-6978. [14] GEBREEGZIABHER G G, ASEMAHEGNE A S, AYELE D W, et al. One-step synthesis and characterization of reduced graphene oxide using chemical exfoliation method[J]. Materials Today Chemistry, 2019, 12: 233-239. [15] BRODIE B C. On the atomic weight of graphite[J]. Proceedings of the Royal Society of London, 1859, 10: 11-12. [16] STAUDENMAIER L. Verfahren zur darstellung der graphitsäure[J]. Berichte Der Deutschen Chemischen Gesellschaft, 1898, 31(2): 1481-1487. [17] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339. [18] DIMIEV A M, EIGLER S. Graphene oxide: fundamentals and applications[M]. Hoboken: Wiley, 2016. [19] DIMIEV A M, TOUR J M. Mechanism of graphene oxide formation[J]. ACS Nano, 2014, 8(3): 3060-3068. [20] SEILER S, HALBIG C E, GROTE F, et al. Effect of friction on oxidative graphite intercalation and high-quality graphene formation[J]. Nature Communications, 2018, 9: 836. [21] HUANG J, ZHAO X, MA C, et al. Preparation of few-layer porous graphene by a soft mechanical method with a short rolling transfer process[J]. ChemPlusChem, 2020, 85(11): 2482-2486. [22] WANG C, KE F, FAN W, et al. Efficient large-scale preparation of defect-free few-layer graphene using a conjugated ionic liquid as green media and its polyetherimide composite[J]. Composites Science and Technology, 2018, 157: 144-151. [23] ZHANG Y, XU Y L. Simultaneous electrochemical dual-electrode exfoliation of graphite toward scalable production of high-quality graphene[J]. Advanced Functional Materials, 2019, 29(37): 1902171. [24] LIU N, LUO F, WU H X, et al. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite[J]. Advanced Functional Materials, 2008, 18(10): 1518-1525. [25] 黄全国, 高 华. 一种电化学制备石墨烯用石墨电极及其制备方法: CN202010196130.2[P]. 2020-06-19. HUANG Q G, GAO H. A graphite electrode for electrochemical preparation of graphene and a preparation method thereof: CN202010196130.2[P]. 2020-06-19 (in Chinese). [26] SHARMA V K. Potassium ferrate(VI): an environmentally friendly oxidant[J]. Advances in Environmental Research, 2002, 6(2): 143-156. [27] SHARMA V K. Ferrate(VI) and ferrate(V) oxidation of organic compounds: kinetics and mechanism[J]. Coordination Chemistry Reviews, 2013, 257(2): 495-510. [28] MAO W Q, WANG J M, XU Z H, et al. Effects of the oxidation treatment with K2FeO4 on the physical properties and electrochemical performance of a natural graphite as electrode material for lithium ion batteries[J]. Electrochemistry Communications, 2006, 8(8): 1326-1330. [29] PENG L, XU Z, LIU Z, et al. An iron-based green approach to 1-h production of single-layer graphene oxide[J]. Nature Communications, 2015, 6: 5716. [30] SOFER Z, LUXA J, JANKOVSKÝ O, et al. Synthesis of graphene oxide by oxidation of graphite with ferrate(VI) compounds: myth or reality?[J]. Angewandte Chemie International Edition, 2016, 55(39): 11965-11969. [31] YU C, WANG C F, CHEN S. Facile access to graphene oxide from ferro-induced oxidation[J]. Scientific Reports, 2016, 6: 17071. [32] YU H T, ZHANG B W, BULIN C K, et al. High-efficient synthesis of graphene oxide based on improved hummers method[J]. Scientific Reports, 2016, 6: 36143. [33] ZHANG Z Y, XU X C. Nondestructive covalent functionalization of carbon nanotubes by selective oxidation of the original defects with K2FeO4[J]. Applied Surface Science, 2015, 346: 520-527. [34] 侯 波. 石墨插层膨胀剥离制备石墨烯及其导电材料应用研究[D]. 绵阳: 西南科技大学, 2020. HOU B. Preparation of graphene by graphite intercalation expansion stripping and its application in conducting materials[D]. Mianyang: Southwest University of Science and Technology, 2020 (in Chinese). [35] DIMIEV A M, BACHILO S M, SAITO R, et al. Reversible formation of ammonium persulfate/sulfuric acid graphite intercalation compounds and their peculiar Raman spectra[J]. ACS Nano, 2012, 6(9): 7842-7849. [36] LIU Y H, WU X N, TIAN Y X, et al. Largely enhanced oxidation of graphite flakes via ammonium persulfate-assisted gas expansion for the preparation of graphene oxide sheets[J]. Carbon, 2019, 146: 618-626. [37] ZHENG H, CHENG Y S, ZHAO R R, et al. An improved strategy to synthesize graphite oxide with controllable interlayer spacing as coatings for anticorrosion application[J]. Journal of Applied Polymer Science, 2021, 138(6): 49823. [38] LIU T, ZHANG R J, ZHANG X S, et al. One-step room-temperature preparation of expanded graphite[J]. Carbon, 2017, 119: 544-547. [39] 朱 杰, 彭同江, 孙红娟, 等. 化学插层自膨胀法制备膨胀石墨的工艺条件及其性能变化[J]. 化工矿物与加工, 2022, 51(3): 31-35. ZHU J, PENG T J, SUN H J, et al. Process conditions and varying performance of expanded graphite prepared using chemical intercalation self-expansion method[J]. Industrial Minerals & Processing, 2022, 51(3): 31-35 (in Chinese). [40] KANG F Y, LENG Y, ZHANG T Y. Influences of H2O2 on synthesis of H2SO4-GICs[J]. Journal of Physics and Chemistry of Solids, 1996, 57(6/7/8): 889-892. [41] 刘玉海, 邹 琴, 潘 群, 等. H2O2氧化制备萝北细鳞片可膨胀石墨研究[J]. 广东建材, 2011, 27(9): 103-105. LIU Y H, ZOU Q, PAN Q, et al. Study on preparation of Luobei fine flake expandable graphite by H2O2 oxidation[J]. Guangdong Building Materials, 2011, 27(9): 103-105 (in Chinese). [42] HUANG J D, TANG Q Q, LIAO W B, et al. Green preparation of expandable graphite and its application in flame-resistance polymer elastomer[J]. Industrial & Engineering Chemistry Research, 2017, 56(18): 5253-5261. [43] CHEN X B, TIAN F Y, PERSSON C, et al. Interlayer interactions in graphites[J]. Scientific Reports, 2013, 3: 3046. [44] DIMIEV A M, CERIOTTI G, BEHABTU N, et al. Direct real-time monitoring of stage transitions in graphite intercalation compounds[J]. ACS Nano, 2013, 7(3): 2773-2780. [45] 王慎敏, 周 群, 乔英杰. 低硫可膨胀石墨制备新工艺[J]. 应用化学, 2000, 17(1): 93-95. WANG S M, ZHOU Q, QIAO Y J. A new technology for preparation of low surphur expandable graphite[J]. Chinese Journal of Applied Chemistry, 2000, 17(1): 93-95 (in Chinese). [46] 王立松. 三氯化铁为插入剂制备膨胀石墨[J]. 炭素, 2004(3): 26-27. WANG L S. Preparation of expansion graphite with the ferric-trichloride as the inserting reagent[J]. Carbon, 2004(3): 26-27 (in Chinese). [47] 秦玉春, 王海涛. 可膨胀石墨的制备[J]. 炭素技术, 2002, 21(3): 21-23. QIN Y C, WANG H T. Preparation of expansible graphites[J]. Carbon Techniques, 2002, 21(3): 21-23 (in Chinese). [48] 席改卿, 庞秀言, 王建森, 等. 以磷酸铵为辅助插层剂的可膨胀石墨的制备及其阻燃性能研究[J]. 非金属矿, 2011, 34(5): 18-20+50. XI G Q, PANG X Y, WANG J S, et al. Preparation and anti-flame property of expandable graphite possessing low initial expansion temperature with ammonium phosphate as ancillary intercalation reagent[J]. Non-Metallic Mines, 2011, 34(5): 18-20+50 (in Chinese). [49] 郭菊仙, 刘又畅, 苏新虹, 等. 插层剂对纳米膨胀石墨片尺寸的影响[J]. 材料科学与工程学报, 2013, 31(6): 840-845. GUO J X, LIU Y C, SU X H, et al. Influence of intercalation agent on size of expanded nano-graphite[J]. Journal of Materials Science and Engineering, 2013, 31(6): 840-845 (in Chinese). [50] HU Y, SU M, XIE X, et al. Few-layer graphene oxide with high yield via efficient surfactant-assisted exfoliation of mildly-oxidized graphite[J]. Applied Surface Science, 2019, 494: 1100-1108. [51] XU C B, WANG H L, YANG W J, et al. Expanded graphite modified by CTAB-KBr/H3PO4 for highly efficient adsorption of dyes[J].Journal of Polymers and the Environment, 2018, 26(3): 1206-1217. [52] FU W J, KIGGANS J, OVERBURY S H, et al. Low-temperature exfoliation of multilayer-graphene material from FeCl3 and CH3NO2 co-intercalated graphite compound[J]. Chemical Communications, 2011, 47(18): 5265. [53] NAIR S S, SAHA T, DEY P, et al. Efficiency of different methods of oxidation of graphite: a key route of graphene preparation[J].Graphene and 2D Materials Technologies, 2021, 6(1/2): 1-11. [54] SHEN J F, HU Y Z, SHI M, et al. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets[J]. Chemistry of Materials, 2009, 21(15): 3514-3520. [55] LIANG H, LI S C, CHEN Y P, et al. Radar attenuation performance of magnetic expanded graphite aerosol obtained from thermal expansion of stage-1 ferrocene graphite intercalation compounds[J]. Materials & Design, 2020, 188: 108436. [56] TIAN Z M, YU P, LOWE S E, et al. Facile electrochemical approach for the production of graphite oxide with tunable chemistry[J]. Carbon, 2017, 112: 185-191. [57] WANG H, WEI C, ZHU K Y, et al. Preparation of graphene sheets by electrochemical exfoliation of graphite in confined space and their application in transparent conductive films[J]. ACS Applied Materials & Interfaces, 2017, 9(39): 34456-34466. [58] LIU J L, POH C K, ZHAN D, et al. Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod[J]. Nano Energy, 2013, 2(3): 377-386. [59] DAI C L, GU C L, LIU B C, et al. Preparation of low-temperature expandable graphite as a novel steam plugging agent in heavy oil reservoirs[J]. Journal of Molecular Liquids, 2019, 293: 111535. [60] ZHAO G, DAI C L, GU C L, et al. Expandable graphite particles as a novel in-depth steam channeling control agent in heavy oil reservoirs[J]. Chemical Engineering Journal, 2019, 368: 668-677. [61] PANG X Y, TIAN Y, WENG M Q. Preparation of expandable graphite with silicate assistant intercalation and its effect on flame retardancy of ethylene vinyl acetate composite[J]. Polymer Composites, 2015, 36(8): 1407-1416. [62] ZHANG F S, ZHAO Q, YAN X, et al. Rapid preparation of expanded graphite by microwave irradiation for the extraction of triazine herbicides in milk samples[J]. Food Chemistry, 2016, 197: 943-949. [63] CHUNG D D L. A review of exfoliated graphite[J]. Journal of Materials Science, 2016, 51(1): 554-568. [64] IBARRA-HERNÁNDEZ A, VEGA-RIOS A, OSUNA V. Synthesis of graphite oxide with different surface oxygen contents assisted microwave radiation[J]. Nanomaterials, 2018, 8(2): 106. [65] WU W Y, LIU M J, GU Y, et al. Fast chemical exfoliation of graphite to few-layer graphene with high quality and large size via a two-step microwave-assisted process[J]. Chemical Engineering Journal, 2020, 381: 122592. [66] SHULGA Y M, BASKAKOV S A, KNERELMAN E I, et al. Carbon nanomaterial produced by microwave exfoliation of graphite oxide: new insights[J]. RSC Advances, 2014, 4(2): 587-592. [67] ZHU X J, ZUO L W, WU S L, et al. Porous three-dimensional activated microwave exfoliated graphite oxide as an anode material for lithium ion batteries[J]. RSC Advances, 2016, 6(60): 55176-55181. |
[1] | 熊孟雪, 杨敏, 陈前林. 基于Box-Behnken响应面法的钠离子吸附剂的制备工艺条件优化[J]. 硅酸盐通报, 2022, 41(7): 2360-2367. |
[2] | 韩委委, 刘莉, 余本锐, 朱庆霞. 热处理对钛基体表面电泳沉积GO/HA生物活性涂层的影响[J]. 硅酸盐通报, 2022, 41(7): 2558-2563. |
[3] | 陈洋, 邓承继, 娄晓明, 丁军, 余超. 低碳MgO-C耐火材料结构和性能优化的研究进展[J]. 硅酸盐通报, 2022, 41(6): 2153-2159. |
[4] | 陈妤, 李创创, 李国浩, 董凯, 刘荣桂, 陆春华. 氧化石墨烯改性水泥砂浆抗氯离子渗透性能[J]. 硅酸盐通报, 2022, 41(5): 1539-1546. |
[5] | 马腾, 王泽琦, 任一鸣, 朱留凯, 李涛, 任保增. 响应面法优化氟硅酸铵制备白炭黑和氟化铵[J]. 硅酸盐通报, 2022, 41(3): 940-952. |
[6] | 陈妤, 董凯, 张文杰, 李国浩, 李创创, 唐丽. 干湿交替氯盐环境下氧化石墨烯水泥砂浆抗侵蚀研究[J]. 硅酸盐通报, 2022, 41(12): 4147-4153. |
[7] | 刘浩, 聂晨晨, 李宏萍, 周俊, 杨兰文, 谢贵明. 基于Box-Behnken响应面法优化无水磷石膏疏水改性工艺[J]. 硅酸盐通报, 2022, 41(10): 3599-3607. |
[8] | 马娟, 程从密, 刘琪, 牛艳飞. 低成本多孔非对称陶瓷过滤膜的制备与性能研究进展[J]. 硅酸盐通报, 2022, 41(10): 3634-3646. |
[9] | 焦敏. 氧化石墨烯对新拌水泥浆体流变性的影响[J]. 硅酸盐通报, 2021, 40(7): 2159-2164. |
[10] | 吴一晨, 郭荣鑫, 夏海廷, 索玉霞, 未立煌, 陈佳敏. 不同分散剂对复掺GO/CNFs水泥基复合材料力学和导电性能的影响[J]. 硅酸盐通报, 2021, 40(3): 731-740. |
[11] | 阴钰娇, 吴飞. 纳米二氧化硅/氧化石墨烯复合物对普通硅酸盐水泥力学性能的影响[J]. 硅酸盐通报, 2021, 40(10): 3352-3358. |
[12] | 马冰洋;杨铁军;潘产金;侯东帅. 不同水含量下氧化石墨烯改性水泥材料界面性能的模拟研究[J]. 硅酸盐通报, 2020, 39(7): 2073-2078. |
[13] | 赵威;王竹;戴永刚;周春生;南宁. MnO2对钼尾矿基发泡陶瓷升温速率影响的研究[J]. 硅酸盐通报, 2020, 39(4): 1266-1271. |
[14] | 罗素蓉;李欣;林伟毅;王德辉. 氧化石墨烯分散方式对水泥基材料性能的影响[J]. 硅酸盐通报, 2020, 39(3): 677-684. |
[15] | 王洒;杨谋存;朱跃钊. 蓝钨纳米颗粒的化学改性及其纳米流体热冲击稳定性实验研究[J]. 硅酸盐通报, 2020, 39(2): 631-638. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||