[1] 郭强强, 冯志海, 周延春. 超高温陶瓷的研究进展[J]. 宇航材料工艺, 2015, 45(5): 1-13. GUO Q Q, FENG Z H, ZHOU Y C. Progress on ultra-high temperature ceramics[J]. Aerospace Materials & Technology, 2015, 45(5): 1-13 (in Chinese). [2] 严春雷, 袁 蓓, 查柏林. 超高温陶瓷材料研究进展[J]. 硅酸盐通报, 2017, 36(11): 3703-3707. YAN C L, YUAN B, ZHA B L. Progress in ultra-high-temperature ceramic materials[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(11): 3703-3707 (in Chinese). [3] 张幸红, 胡 平, 韩杰才, 等. 超高温陶瓷复合材料的研究进展[J]. 科学通报, 2015, 60(3): 257-266. ZHANG X H, HU P, HAN J C, et al. Research progress on ultra-high temperature ceramic composites[J]. Chinese Science Bulletin, 2015, 60(3): 257-266 (in Chinese). [4] 严春雷, 刘荣军, 曹英斌, 等. 超高温陶瓷基复合材料制备工艺研究进展[J]. 宇航材料工艺, 2012, 42(4): 7-11. YAN C L, LIU R J, CAO Y B, et al. Research progress in preparation techniques of ultrahigh temperature ceramics based composites[J]. Aerospace Materials & Technology, 2012, 42(4): 7-11 (in Chinese). [5] 尹凯俐, 周立娟, 魏春城, 等. 碳纤维增韧ZrC-SiC陶瓷基复合材料制备工艺研究现状[J]. 陶瓷学报, 2018, 39(2): 132-137. YIN K L, ZHOU L J, WEI C C, et al. Research progress in fabrication of carbon fiber reinforced ZrC-SiC ceramic matrix composites[J]. Journal of Ceramics, 2018, 39(2): 132-137 (in Chinese). [6] KÜTEMEYER M, SCHOMER L, HELMREICH T, et al. Fabrication of ultra high temperature ceramic matrix composites using a reactive melt infiltration process[J]. Journal of the European Ceramic Society, 2016, 36(15): 3647-3655. [7] JIANG J M, WANG S, LI W, et al. Preparation of 3D Cf/ZrC-SiC composites by joint processes of PIP and RMI[J]. Materials Science and Engineering: A, 2014, 607: 334-340. [8] WANG D K, DONG S M, ZHOU H J, et al. Effect of pyrolytic carbon interface on the properties of 3D C/ZrC-SiC composites fabricated by reactive melt infiltration[J]. Ceramics International, 2016, 42(8): 10272-10278. [9] BARGERON C B, BENSON R C, JETTE A N, et al. Oxidation of hafnium carbide in the temperature range 1 400 ℃ to 2 060 ℃[J]. Journal of the American Ceramic Society, 1993, 76(4): 1040-1046. [10] CHANG Y B, SUN W, XIONG X, et al. Microstructure and ablation behaviors of a novel gradient C/C-ZrC-SiC composite fabricated by an improved reactive melt infiltration[J]. Ceramics International, 2016, 42(15): 16906-16915. [11] WANG S L, LI H, REN M S, et al. Microstructure and ablation mechanism of C/C-ZrC-SiC composites in a plasma flame[J]. Ceramics International, 2017, 43(14): 10661-10667. [12] CHEN X W, FENG Q, ZHOU H J, et al. Ablation behavior of three-dimensional Cf/SiC-ZrC-ZrB2 composites prepared by a joint process of sol-gel and reactive melt infiltration[J]. Corrosion Science, 2018, 134: 49-56. [13] YAN B, CHEN Z F, ZHU J X, et al. Effects of ablation at different regions in three-dimensional orthogonal C/SiC composites ablated by oxyacetylene torch at 1800 ℃[J]. Journal of Materials Processing Technology, 2009, 209(7): 3438-3443. [14] LAMOUROUX F, NASLAIN R, JOUIN J M. Kinetics and mechanisms of oxidation of 2D woven C/SiC composites: ii, theoretical approach[J]. Journal of the American Ceramic Society, 1994, 77(8): 2058-2068. [15] LIU J, ZHANG L T, HU F, et al. Polymer-derived yttrium silicate coatings on 2D C/SiC composites[J]. Journal of the European Ceramic Society, 2013, 33(2): 433-439. [16] PI H L, FAN S W, WANG Y G. C/SiC-ZrB2-ZrC composites fabricated by reactive melt infiltration with ZrSi2 alloy[J]. Ceramics International, 2012, 38(8): 6541-6548. [17] WANG Y G, ZHU X J, ZHANG L T, et al. Reaction kinetics and ablation properties of C/C-ZrC composites fabricated by reactive melt infiltration[J]. Ceramics International, 2011, 37(4): 1277-1283. [18] TIAN Y S, CHEN C Z, WANG D Y, et al. Recent developments in zirconia thermal barrier coatings[J]. Surface Review and Letters, 2005, 12(3): 369-378. [19] 吴 硕, 赵远涛, 李文戈, 等. 氧化锆基双陶瓷层热障涂层表层材料研究进展[J]. 表面技术, 2020, 49(9): 101-108. WU S, ZHAO Y T, LI W G, et al. Research progress on top coating materials of thermal barrier coatings with double-ceramic-layer based on zirconia[J]. Surface Technology, 2020, 49(9): 101-108 (in Chinese). [20] MILLER R A. Thermal barrier coatings for aircraft engines: history and directions[J].Journal of Thermal Spray Technology, 1997, 6(1): 35-42. [21] 赵鹏森, 曹新鹏, 郑海忠, 等. 稀土掺杂热障涂层的研究进展[J]. 航空材料学报, 2021, 41(4): 83-95. ZHAO P S, CAO X P, ZHENG H Z, et al. Research progress of rare earth doped thermal barrier coatings[J]. Journal of Aeronautical Materials, 2021, 41(4): 83-95 (in Chinese). [22] ZHANG X H, HU P, HAN J C, et al. The addition of lanthanum hexaboride to zirconium diboride for improved oxidation resistance[J]. Scripta Materialia, 2007, 57(11): 1036-1039. [23] JAYASEELAN D D, ZAPATA-SOLVAS E, BROWN P, et al. In situ formation of oxidation resistant refractory coatings on SiC-reinforced ZrB2 ultra high temperature ceramics[J]. Journal of the American Ceramic Society, 2012, 95(4): 1247-1254. [24] LIU H Z, YANG X, FANG C Q, et al. Ablation resistance and mechanism of SiC-LaB6 and SiC-LaB6-ZrB2 ceramics under plasma flame[J]. Ceramics International, 2020, 46(10): 16249-16256. [25] THANGADURAI P, BOSE A C, RAMASAMY S. Phase stabilization and structural studies of nanocrystalline La2O3-ZrO2[J].Journal of Materials Science, 2005, 40(15): 3963-3968. [26] KASHYAP S K, KUMAR A, MITRA R. Kinetics and evolution of oxide scale during various stages of isothermal oxidation at 1 300 ℃ in spark plasma sintered ZrB2-SiC-LaB6 composites[J]. Journal of the European Ceramic Society, 2020, 40(15): 4997-5011. [27] ZAPATA-SOLVAS E, JAYASEELAN D D, BROWN P M, et al. Thermal properties of La2O3-doped ZrB2- and HfB2-based ultra-high temperature ceramics[J]. Journal of the European Ceramic Society, 2013, 33(15/16): 3467-3472. [28] ZAPATA-SOLVAS E, JAYASEELAN D D, BROWN P M, et al. Effect of La2O3 addition on long-term oxidation kinetics of ZrB2-SiC and HfB2-SiC ultra-high temperature ceramics[J]. Journal of the European Ceramic Society, 2014, 34(15): 3535-3548. [29] 李学英, 张幸红, 韩杰才, 等. Y2O3掺杂ZrB2-SiC基超高温陶瓷的抗烧蚀性能[J]. 稀有金属材料与工程, 2011, 40(5): 820-823. LI X Y, ZHANG X H, HAN J C, et al. Ablation resistance behavior of ZrB2-SiC ultra-high temperature ceramics with Y2O3 addition[J]. Rare Metal Materials and Engineering, 2011, 40(5): 820-823 (in Chinese). [30] KOVÁČOVÁ Z, OROVČÍK L, SEDLÁČEK J, et al. The effect of YB4 addition in ZrB2-SiC composites on the mechanical properties and oxidation performance tested up to 2 000 ℃[J]. Journal of the European Ceramic Society, 2020, 40(12): 3829-3843. [31] KOVÁČOVÁ Z, BAČA L, NEUBAUER E, et al. Influence of sintering temperature, SiC particle size and Y2O3 addition on the densification, microstructure and oxidation resistance of ZrB2-SiC ceramics[J]. Journal of the European Ceramic Society, 2016, 36(12): 3041-3049. [32] MA H C, MIAO Q, LIANG W P, et al. High temperature oxidation resistance of Y2O3 modified ZrB2-SiC coating for carbon/carbon composites[J]. Ceramics International, 2021, 47(5): 6728-6735. [33] ZHANG X H, LI X Y, HAN J C, et al. Effects of Y2O3 on microstructure and mechanical properties of ZrB2-SiC ceramics[J]. Journal of Alloys and Compounds, 2008, 465(1/2): 506-511. [34] LI X Y, HAN J C, ZHANG X H, et al. Effect of the rare earth oxides on sintering behavior and microstructure of ZrB2-SiC ceramics[J]. Key Engineering Materials, 2008, 368/369/370/371/372: 1740-1742. [35] CHEN M M, LI H J, YAO X Y, et al. High temperature oxidation resistance of La2O3-modified ZrB2-SiC coating for SiC-coated carbon/carbon composites[J]. Journal of Alloys and Compounds, 2018, 765: 37-45. [36] CHEN M M, YAO X Y, FENG G H, et al. Anti-ablation performance of La2O3-modified ZrB2 coating on SiC-coated carbon/carbon composites[J]. Ceramics International, 2020, 46(18): 28758-28766. [37] JIA Y J, LI H J, FU Q G, et al. Ablation behavior of ZrC-La2O3 coating for SiC-coated carbon/carbon composites under an oxyacetylene torch[J]. Ceramics International, 2016, 42(12): 14236-14245. [38] 姚西媛, 陈苗苗, 冯广辉. La2O3改性ZrB2-SiC涂层C/C复合材料全温域抗氧化行为研究[J]. 稀有金属材料与工程, 2020, 49(1): 241-246. YAO X Y, CHEN M M, FENG G H. Antioxidant behavior of La2O3 modified ZrB2-SiC coating for C/C composites at full temperature[J]. Rare Metal Materials and Engineering, 2020, 49(1): 241-246 (in Chinese). [39] ZHAO L Y, JIA D C, WANG Y J, et al. ZrC-ZrB2 matrix composites with enhanced toughness prepared by reactive hot pressing[J]. Scripta Materialia, 2010, 63(8): 887-890. [40] FANG C Q, YANG X, CHAI L Y, et al. Modifying effects of in situ grown LaB6 on composition, microstructure and ablation property of C/C-SiC-ZrC composites[J]. Corrosion Science, 2022, 209: 110672. [41] JIA Y J, LI H J, FENG L, et al. Ablation behavior of rare earth La-modified ZrC coating for SiC-coated carbon/carbon composites under an oxyacetylene torch[J]. Corrosion Science, 2016, 104: 61-70. [42] FANG C Q, HUANG B Y, YANG X, et al. Effects of LaB6 on the microstructures and ablation properties of 3D C/C-SiC-ZrB2-LaB6 composites[J]. Journal of the European Ceramic Society, 2020, 40(8): 2781-2790. [43] LI B, LI H J, YAO X Y, et al. Ablation behavior of sharp leading edge parts made of rare earth La-compound modified ZrB2 coated C/C composites[J]. Corrosion Science, 2020, 175: 108895. [44] JIA Y J, LI H J, LI L, et al. Effect of monolithic LaB6 on the ablation resistance of ZrC/SiC coating prepared by supersonic plasma spraying for C/C composites[J]. Journal of Materials Science & Technology, 2016, 32(10): 996-1002. [45] JIA Y J, LI H J, YAO X Y, et al. Effect of LaB6 content on the gas evolution and structure of ZrC coating for carbon/carbon composites during ablation[J]. Ceramics International, 2017, 43(4): 3601-3609. [46] FANG C Q, YANG X, HE K J, et al. Microstructure and ablation properties of La2O3 modified C/C-SiC composites prepared via precursor infiltration pyrolysis[J]. Journal of the European Ceramic Society, 2019, 39(4): 762-772. [47] JIA Y J, LI H J, YAO X Y, et al. Long-time ablation protection of carbon/carbon composites with different-La2O3-content modified ZrC coating[J]. Journal of the European Ceramic Society, 2018, 38(4): 1046-1058. [48] CHEN B W, NI D W, LU J, et al. Long-term and cyclic ablation behavior of La2O3 modified Cf/ZrB2-SiC composites at 2 500 ℃[J]. Corrosion Science, 2022, 206: 110538. [49] WANG C, ZINKEVICH M, ALDINGER F. The zirconia-hafnia system: DTA measurements and thermodynamic calculations[J]. Journal of the American Ceramic Society, 2006, 89: 3751-3758. [50] SMITH A W, MESZAROS F W, AMATA C D. Permeability of zirconia, hafnia, and thoria to oxygen[J]. Journal of the American Ceramic Society, 1966, 49(5): 240-244. [51] FENG G H, LI H J, YAO X Y, et al. Mechanical properties and ablation resistance of La2O3-modified HfC-SiC coating for SiC-coated C/C composites[J]. Corrosion Science, 2021, 182: 109259. [52] FANG C Q, HUANG B Y, YANG X, et al. Effects of LaB6 on composition, microstructure and ablation property of the HfC-TaC-SiC doped C/C composites prepared by precursor infiltration and pyrolysis[J]. Corrosion Science, 2021, 184: 109347. [53] LUO L, LIU J P, DUAN L Y, et al. Multiple ablation resistance of La2O3/Y2O3-doped C/SiC-ZrC composites[J]. Ceramics International, 2015, 41(10): 12878-12886. [54] VINCI A, ZOLI L, GALIZIA P, et al. Influence of Y2O3 addition on the mechanical and oxidation behaviour of carbon fibre reinforced ZrB2/SiC composites[J]. Journal of the European Ceramic Society, 2020, 40(15): 5067-5075. [55] LIN H, LIU Y Y, LIANG W P, et al. Effect of the Y2O3 amount on the oxidation behavior of ZrB2-SiC-based coatings for carbon/carbon composites[J]. Journal of the European Ceramic Society, 2022, 42(12): 4770-4782. [56] SHEN X T, WANG X, SHI Z Q, et al. Effect of yttrium carbide on ablation behavior of zirconium carbide modified carbon/carbon composites[J]. Corrosion Science, 2020, 170: 108675. |