[1] LIU X J, PAN C F, YU J, et al. Study on micro-characteristics of microbe-induced calcium carbonate solidified loess[J]. Crystals, 2021, 11(12): 1492.
[2] 黄启红. 土地利用方式对土壤侵蚀的影响述评[J]. 水土保持应用技术, 2022(5): 55-57.
HUANG Q H. Review on the effects of land use on soil erosion [J]. Technology of Soil and Water Conservation, 2022(5): 55-57 (in Chinese).
[3] 许 强. 对滑坡监测预警相关问题的认识与思考[J]. 工程地质学报, 2020, 28(2): 360-374.
XU Q. Understanding the landslide monitoring and early warning: consideration to practical issues[J]. Journal of Engineering Geology, 2020, 28(2): 360-374 (in Chinese).
[4] 赵旭东. 湿陷性黄土地基处理方法研究[J]. 四川水泥, 2022(7): 70-71+77.
ZHAO X D. Study on treatment method of collapsible loess foundation [J]. Sichuan Cement, 2022(7): 70-71+77 (in Chinese).
[5] 李喜安, 黄润秋, 彭建兵. 黄土崩解性试验研究[J]. 岩石力学与工程学报, 2009, 28(s1): 3207-3213.
LI X A, HUANG R Q, PENG J B. Experimental research on disintegration of loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(s1): 3207-3213 (in Chinese).
[6] 高建伟, 余宏明, 钱玉智, 等. 重塑黄土崩解特性试验研究[J]. 长江科学院院报, 2014, 31(10): 146-150+155.
GAO J W, YU H M, QIAN Y Z, et al. Experimental study on disintegration characteristics of remolded loess[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(10): 146-150+155 (in Chinese).
[7] 李朝军. 特殊土路段道路施工技术与创新实践[J]. 工程建设与设计, 2022(12): 219-221.
LI C J. Road construction technology and innovation practice for special soil section[J]. Construction & Design for Engineering, 2022(12): 219-221 (in Chinese).
[8] 王 谦, 刘钊钊, 王兰民, 等. 黄土地基抗震处理技术研究进展与展望[J]. 防灾减灾工程学报, 2021, 41(6): 1366-1381.
WANG Q, LIU Z Z, WANG L M, et al. Review on seismic reinforcement of loess foundation[J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(6): 1366-1381 (in Chinese).
[9] 白晓红. 湿陷性黄土及地基处理新技术[J]. 山西交通科技, 2022(1): 1-5+34.
BAI X H. Collapsible loess and new technology of foundation treatment[J]. Shanxi Science & Technology of Transportation, 2022(1): 1-5+34 (in Chinese).
[10] 周 健, 张思峰, 贾敏才, 等. 强夯理论的研究现状及最新技术进展[J]. 地下空间与工程学报, 2006, 2(3): 510-516.
ZHOU J, ZHANG S F, JIA M C, et al. Theoretic research situation and latest technical progress of dynamic consolidation method[J]. Chinese Journal of Underground Space and Engineering, 2006, 2(3): 510-516 (in Chinese).
[11] FENG S J, DU F L, SHI Z M, et al. Field study on the reinforcement of collapsible loess using dynamic compaction[J]. Engineering Geology, 2015, 185: 105-115.
[12] WU W B, YANG Z J, LIU X, et al. Horizontal dynamic response of pile in unsaturated soil considering its construction disturbance effect[J]. Ocean Engineering, 2022, 245: 110483.
[13] 王生俊, 韩文峰, 王银梅. LD岩土胶结剂加固黄土试验研究[J]. 岩石力学与工程学报, 2003, 22(s2): 2888-2893.
WANG S J, HAN W F, WANG Y M. Testing study on loess consolidated by LD serial rock-soil cemedin[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(s2): 2888-2893 (in Chinese).
[14] 彭 波, 李文瑛, 戴经梁. 液体固化剂加固土的研究[J]. 西安公路交通大学学报, 2001, 21(1): 15-18.
PENG B, LI W Y, DAI J L. Research on liquid stabilizer reinforced soil[J]. Journal of Xi'an Highway University, 2001, 21(1): 15-18 (in Chinese).
[15] 靳贵晓, 张瑾璇, 许 凯, 等. 颗粒级配对残积土MICP灌浆效果的影响评价[J]. 地下空间与工程学报, 2020, 16(1): 295-302.
JIN G X, ZHANG J X, XU K, et al. Influence of particle gradation on grouting effect of microbial induced calcite precipitated of residual soil impact assessment[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(1): 295-302 (in Chinese).
[16] 孔德成, 孙治国, 贾方方. 微生物诱导碳酸钙沉淀技术改良黄土湿陷性研究[J]. 硅酸盐通报, 2022, 41(3): 969-975.
KONG D C, SUN Z G, JIA F F. Microbial induced calcium carbonate precipitation technique for improving collapsibility of loess[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(3): 969-975 (in Chinese).
[17] DYSON G J, RANDOLPH M F. Monotonic lateral loading of piles in calcareous sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(4): 346-352.
[18] 范月东, 王玉珍, 许顺顺, 等. 基于混菌矿化增强粗骨料的再生混凝土裂缝自修复性能[J]. 硅酸盐通报, 2022, 41(2): 479-487.
FAN Y D, WANG Y Z, XU S S, et al. Self-healing performance of cracks in recycled concrete based on coarse aggregates enhanced by MICP of mixed cultures of bacteria[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 479-487 (in Chinese).
[19] 童天志, 缪林昌, 孙潇昊, 等. 低温条件微生物沉积碳酸钙试验研究[J]. 硅酸盐通报, 2018, 37(5): 1509-1514.
TONG T Z, MIAO L C, SUN X H, et al. Microbially-induced carbonate precipitation in low temperature[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(5): 1509-1514 (in Chinese).
[20] 程晓辉, 麻 强, 杨 钻, 等. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35(8): 1486-1495.
CHENG X H, MA Q, YANG Z, et al. Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1486-1495 (in Chinese).
[21] 赵 茜. 微生物诱导碳酸钙沉淀(MICP)固化土壤实验研究[D]. 北京: 中国地质大学(北京), 2014.
ZHAO Q. Experimental study on soil improvement using microbial induced calcite precipitation (MICP)[D]. Beijing: China University of Geosciences, 2014 (in Chinese).
[22] 马琰榕. MICP技术加固黄土力学特性及其机理试验研究[D]. 太原: 太原理工大学, 2020.
MA Y R. Experimental study on mechanical properties and mechanism of loess reinforced by MICP[D]. Taiyuan: Taiyuan University of Technology, 2020 (in Chinese).
[23] 范金月. 黄土的MICP胶结固化机理及力学特性研究[D]. 西安: 西安建筑科技大学, 2020.
FAN J Y. Study on MICP solidification mechanism and mechanical properties of loess[D]. Xi'an: Xi'an University of Architecture and Technology, 2020 (in Chinese).
[24] WHIFFIN V S, VAN PAASSEN L A, HARKES M P. Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology Journal, 2007, 24(5): 417-423.
[25] HARKES M P, VAN PAASSEN L A, BOOSTER J L, et al. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement[J]. Ecological Engineering, 2010, 36(2): 112-117.
[26] 李 驰, 王 硕, 王燕星, 等. 沙漠微生物矿化覆膜及其稳定性的现场试验研究[J]. 岩土力学, 2019, 40(4): 1291-1298.
LI C, WANG S, WANG Y X, et al. Field experimental study on stability of bio-mineralization crust in the desert[J]. Rock and Soil Mechanics, 2019, 40(4): 1291-1298 (in Chinese).
[27] ZHANG H N, JIA C Q, WANG G H, et al. Physical-mechanical properties of microbially induced calcite precipitation-treated loess and treatment mechanism[J]. Journal of Mountain Science, 2022, 19(10): 2952-2967.
[28] LIANG S H, XIAO X L, FANG C X, et al. Experimental study on the mechanical properties and disintegration resistance of microbially solidified granite residual soil[J]. Crystals, 2022, 12(2): 132.
[29] LI X, WANG L, YAN Y L, et al. Experimental study on the disintegration of loess in the Loess Plateau of China[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(7): 4907-4918.
[30] 范楠楠, 李彦荣. 不同水环境下含根马兰黄土的崩解性初探[J]. 中国农村水利水电, 2021(3): 6-12.
FAN N N, LI Y R. Preliminary research on the disintegration of Malan loess with roots in different water environments[J]. China Rural Water and Hydropower, 2021(3): 6-12 (in Chinese).
[31] 雷胜友. 毛细水对潮湿粉细砂强度影响的理论分析[J]. 长安大学学报(自然科学版), 2013, 33(5): 1-6.
LEI S Y. Theoretical analysis of effects of capillary water on strength of slight wet silt sand[J]. Journal of Chang'an University (Natural Science Edition), 2013, 33(5): 1-6 (in Chinese).
[32] 黎桉君, 许 冲, 李 贤, 等. 非饱和砂质黏性紫色土崩解特性及MICP加固试验[J]. 农业工程学报, 2021, 37(22): 127-135.
LI A J, XU C, LI X, et al. Experimental investigation on disintegration characteristics and MICP reinforcement of unsaturated sandy clayey purple soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(22): 127-135 (in Chinese).
[33] ZHAO Q, LI L, LI C, et al. Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease[J]. Journal of Materials in Civil Engineering, 2014, 26(12): 04014094.
[34] SON Y, MIN J, JANG I, et al. Development of a novel compressed tablet-based bacterial agent for self-healing cementitious material[J]. Cement and Concrete Composites, 2022, 129: 104514.
[35] ZHENG T W, SU Y L, ZHANG X, et al. Effect and mechanism of encapsulation-based spores on self-healing concrete at different curing ages[J]. ACS Applied Materials & Interfaces, 2020, 12(47): 52415-52432.
[36] 卢 靖, 程 彬. 非饱和黄土土水特征曲线的研究[J]. 岩土工程学报, 2007, 29(10): 1591-1592.
LU J, CHENG B. Research on soil-water characteristic curve of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1591-1592 (in Chinese).
[37] 王菁莪, 项 伟, 毕仁能. 基质吸力对非饱和重塑黄土崩解性影响试验研究[J]. 岩土力学, 2011, 32(11): 3258-3262.
WANG J E, XIANG W, BI R N. Experimental study of influence of matric suction on disintegration of unsaturated remolded loess[J]. Rock and Soil Mechanics, 2011, 32(11): 3258-3262 (in Chinese).
[38] BISHOP A. The principle of effective stress[J]. Teknisk Ukeblad, 1959, 39: 859-863. |