硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (2): 694-707.
所属专题: 陶瓷
罗人豪1, 刘凯旋2, 刘志3, 刘琪3, 熊焰1
收稿日期:
2022-09-12
修订日期:
2022-11-08
出版日期:
2023-02-15
发布日期:
2023-03-07
通信作者:
熊 焰,博士,教授。E-mail:xiongyan1980@hotmail.com
作者简介:
罗人豪(2000—),男,硕士研究生。主要从事氧化锆陶瓷方面的研究。E-mail:1847177562@qq.com
LUO Renhao1, LIU Kaixuan2, LIU Zhi3, LIU Qi3, XIONG Yan1
Received:
2022-09-12
Revised:
2022-11-08
Online:
2023-02-15
Published:
2023-03-07
摘要: 氧化锆陶瓷具有优异的力学性能、化学稳定性和白色美学特性,已广泛用于与牙齿相关的修复体中,如牙冠、牙桥、基台以及最近的种植体。然而,氧化锆陶瓷的生物安全性受到低温老化(LTD)的威胁。LTD现象发生在低温潮湿环境中,例如在人体环境中,氧化锆陶瓷的强度在短期内迅速降低,进而导致早期失效。本文从表征方法、影响因素以及老化理论模型等角度,对近年来各国学者对氧化锆陶瓷LTD现象开展的相研究进行了综述,并对相关研究结果进行梳理了及归纳。
中图分类号:
罗人豪, 刘凯旋, 刘志, 刘琪, 熊焰. 氧化锆陶瓷低温老化研究进展[J]. 硅酸盐通报, 2023, 42(2): 694-707.
LUO Renhao, LIU Kaixuan, LIU Zhi, LIU Qi, XIONG Yan. Research Progress on Low-Temperature Degradation of Zirconia Ceramics[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(2): 694-707.
[1] HELMER J D, DRISKELL T D. Research on bioceramics. Symp. on use of ceramics as surgical implants[J]. South Carolina (USA): Clemson University, 1969. [2] GARVIE R C, HANNINK R H, PASCOE R T. Ceramic steel[J]. Nature, 1975, 258(5537): 703-704. [3] HÖLAND W, SCHWEIGER M, RHEINBERGER V M, et al. Bioceramics and their application for dental restoration[J]. Advances in Applied Ceramics, 2009, 108(6): 373-380. [4] KELLY J R, DENRY I. Stabilized zirconia as a structural ceramic: an overview[J]. Dental Materials, 2008, 24(3): 289-298. [5] DENRY I, KELLY J R. State of the art of zirconia for dental applications[J]. Dental Materials: Official Publication of the Academy of Dental Materials, 2008, 24(3): 299-307. [6] HISBERGUES M, VENDEVILLE S, VENDEVILLE P. Zirconia: Established facts and perspectives for a biomaterial in dental implantology[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009, 88B(2): 519-529. [7] CHEVALIER J, DROUIN J M, CALES B. Low temperature ageing behavior of zirconia hip joint heads[M]//Bioceramics. Amsterdam: Elsevier, 1997: 135-138. [8] HUMMER C D III, ROTHMAN R H, HOZACK W J. Catastrophic failure of modular Zirconia-ceramic femoral head components after total hip arthroplasty[J]. The Journal of Arthroplasty, 1995, 10(6): 848-850. [9] KOBAYASHI K, KUWAJIMA H, MASAKI T. Phase change and mechanical properties of ZrO2-Y2O3 solid electrolyte after ageing[J]. Solid State Ionics, 1981, 3/4: 489-493. [10] PASSERINI L. Isomorphism among oxides of different tetravalent metals: CeO2-ThO2; CeO2-ZrO2; CeO2-HfO2. Gazzetta Chimica Italiana, 1939, 60: 762-76. [11] RUFF O, EBERT F. Refractory ceramics: I. The forms of zirconium dioxide. Zeitschrift Fur Anorganische Und Allgemeine Chemie. 1929; 180: 19-41. [12] RUFF O, EBERT F, STEPHEN E. Contributions to the ceramics of highly refractory materials: II System zirconia-lime 1929;180:215-224. [13] FASSINA P, ZAGHINI N, BUKAT A, et al. Yttria and calcia partially stabilized zirconia for biomedical applications[M]//Bioceramics and the Human Body. Dordrecht: Springer Netherlands, 1992: 223-229. [14] GARVIE R C, URBANI C, KENNEDY D R, et al. Biocompatibility of magnesia-partially stabilized zirconia (Mg-PSZ) ceramics[J]. Journal of Materials Science, 1984, 19(10): 3224-3228. [15] PICONI C, BURGER W, RICHTER H G, et al. Y-TZP ceramics for artificial joint replacements[J]. Biomaterials, 1998, 19(16): 1489-1494. [16] CHEVALIER J, DEVILLE S, MÜNCH E, et al. Critical effect of cubic phase on aging in 3 mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis[J]. Biomaterials, 2004, 25(24): 5539-5545. [17] DEVILLE S, GREMILLARD L, CHEVALIER J, et al. A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttria-stabilized zirconia[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2005, 72B(2): 239-245. [18] COVACCI V, BRUZZESE N, MACCAURO G, et al. In vitro evaluation of the mutagenic and carcinogenic power of high purity zirconia ceramic[J]. Biomaterials, 1999, 20(4): 371-376. [19] BAN S, SATO H, SUEHIRO Y, et al. Biaxial flexure strength and low temperature degradation of Ce-TZP/Al2O3 nanocomposite and Y-TZP as dental restoratives[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2008, 87B(2): 492-498. [20] TANAKA K, TAMURA J, KAWANABE K, et al. Ce-TZP/Al2O3 nanocomposite as a bearing material in total joint replacement[J]. Journal of Biomedical Materials Research, 2002, 63(3): 262-270. [21] CHEVALIER J, GREMILLARD L, DEVILLE S. Low-temperature degradation of zirconia and implications for biomedical implants[J]. Annual Review of Materials Research, 2007, 37: 1-32. [22] 李 双, 谢志鹏. 振荡压力烧结法制备高致密度细晶粒氧化锆陶瓷[J]. 无机材料学报, 2016, 31(2): 207-212. LI S, XIE Z P. Preparation of zirconia ceramics with high density and fine grains by oscillatory pressure sintering[J]. Journal of Inorganic Materials, 2016, 31(2): 207-212 (in Chinese). [23] TSUKUMA K, KUBOTA Y, TSUKIDATE T. Thermal and mechanical properties of Y2O3 stabilized tetragonal zirconia polycrystals after ageing at high temperature[J]. Journal of the American Ceramic Society, 1986, 69, 519-522. [24] SATO T, SHIMADA M. Transformation of yttria-doped tetragonal ZrO2 polycrystals by annealing in water[J]. Journal of the American Ceramic Society, 1985, 68(6): 356. [25] SWAB J J. Low temperature degradation of Y-TZP materials[J]. Journal of Materials Science, 1991, 26(24): 6706-6714. [26] SATO T, OHTAKI S, ENDO T, et al. Transformation of yttria-doped tetragonal ZrO2 poly crystals by annealing under controlled humidity conditions[J]. Journal of the American Ceramic Society, 1985, 68(12): C-320. [27] MEYERS M A, MISHRA A, BENSON D J. Mechanical properties of nanocrystalline materials[J]. Progress in Materials Science, 2006, 51(4): 427-556. [28] WATANABE M, IIO S, FUKUURA I, et al. Aging behavior of Y-TZP[M]. American Ceramic Society, 1983. [29] RAHAMAN M N. Ceramic processing and sintering, 1st[M]. New York: Marcel Dekker, 2003. [30] FENG B, YOKOI T, KUMAMOTO A, et al. Atomically ordered solute segregation behaviour in an oxide grain boundary[J]. Nature Communications, 2016, 7: 11079. [31] FENG B, LUGG N R, KUMAMOTO A, et al. Direct observation of oxygen vacancy distribution across yttria-stabilized zirconia grain boundaries[J]. ACS Nano, 2017, 11(11): 11376-11382. [32] REYES-MOREL P E, CHEN I W. Transformation plasticity of CeO2-stabilized tetragonal zirconia polycrystals: I, stress assistance and autocatalysis[J]. Journal of the American Ceramic Society, 1988, 71(5): 343-353. [33] GARVIE R C, NICHOLSON P S. Phase analysis in zirconia systems[J]. Journal of the American Ceramic Society, 1972, 55(6): 303-305. [34] TORAYA H, YOSHIMURA M, SOMIYA S. Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction[J]. Journal of the American Ceramic Society, 1984, 67(6): C-119. [35] CLARKE D R, ADAR F. Measurement of the crystallographically transformed zone produced by fracture in ceramics containing tetragonal zirconia[J]. Journal of the American Ceramic Society, 1982, 65(6): 284-288. [36] CHEVALIER J, LOH J, GREMILLARD L, et al. Low-temperature degradation in zirconia with a porous surface[J]. Acta Biomaterialia, 2011, 7(7): 2986-2993. [37] EICHLER J, RÖDEL J, EISELE U, et al. Effect of grain size on mechanical properties of submicrometer 3Y-TZP: fracture strength and hydrothermal degradation[J]. Journal of the American Ceramic Society, 2007, 90(9): 2830-2836. [38] CHEVALIER J, GREMILLARD L, DEVILLE S. Low-temperature degradation of zirconia and implications for biomedical implants[J]. Annual Review of Materials Research, 2007, 37: 1-32. [39] CHEVALIER J, CALES B, DROUIN J M. Low-temperature aging of Y-TZP ceramics[J]. Journal of the American Ceramic Society, 1999, 82(8): 2150-2154. [40] TSUBAKINO H, KURODA Y, NIIBE M. Surface relief associated with isothermal martensite in zirconia-3-mol%-yttria ceramics observed by atomic force microscopy[J]. Journal of the American Ceramic Society, 1999, 82(10): 2921-2923. [41] DEVILLE S, CHEVALIER J. Martensitic relief observation by atomic force microscopy in yttria-stabilized zirconia[J]. Journal of the American Ceramic Society, 2003, 86(12): 2225-2227. [42] ISO Standard. Implants for surgery-ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP): ISO 13356—2015[S]. International Organization for Standardization, 2015. [43] CHEVALIER J, GREMILLARD L, DEVILLE S. Low-temperature degradation of zirconia and implications for biomedical implants[J]. Annual Review of Materials Research, 2007, 37: 1-32. [44] ZHANG F, INOKOSHI M, VANMEENSEL K, et al. Lifetime estimation of zirconia ceramics by linear ageing kinetics[J]. Acta Materialia, 2015, 92: 290-298. [45] LANGE F F, DUNLOP G L, DAVIS B I. Degradation during aging of transformation-toughened ZrO2-Y2O3 materials at 250 ℃[J]. Journal of the American Ceramic Society, 1986, 69(3): 237-240. [46] 张长瑞, 郝元恺. 陶瓷基复合材料:原理、工艺、性能与设计[M]. 长沙: 国防科技大学出版社, 2001. ZHANG C R, HE Y H. Ceramic matrix composites: principles, processes, properties and design[M]. Changsha: National University of Defense Technology Press, 2001 (in Chinese). [47] 尹邦跃, 王零森, 林健凉, 等. YCe-TZP陶瓷的低温时效[J]. 中南工业大学学报(自然科学版), 2000, 31(4): 335-338. YIN B Y, WANG L S, LIN J L, et al. Low-temperature aging of YCe-TZP ceramics[J].Journal of Central South University of Technology (Natural Science), 2000, 31(4): 335-338 (in Chinese). [48] SATO T, SHIMADA M. Control of the tetragonal-to-monoclinic phase transformation of yttria partially stabilized zirconia in hot water[J]. Journal of Materials Science, 1985, 20(11): 3988-3992. [49] HALLMANN L, MEHL A, ULMER P, et al. The influence of grain size on low-temperature degradation of dental zirconia[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2012, 100B(2): 447-456. [50] HO W F, HSU H C, PENG Y F, et al. Microstructure and mechanical properties of dental 3Y-TZP ceramics by using CaO-P2O5 glass as additive[J]. Ceramics International, 2011, 37(4): 1169-1174. [51] LANGE F F, DUNLOP G L, DAVIS B I. Degradation during aging of transformation-toughened ZrO2-Y2O3 materials at 250 ℃[J]. Journal of the American Ceramic Society, 1986, 69(3): 237-240. [52] CHEVALIER J, DEVILLE S, MÜNCH E, et al. Critical effect of cubic phase on aging in 3 mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis[J]. Biomaterials, 2004, 25(24): 5539-5545. [53] HALLMANN L, ULMER P, REUSSER E, et al. Effect of dopants and sintering temperature on microstructure and low temperature degradation of dental Y-TZP-zirconia[J]. Journal of the European Ceramic Society, 2012, 32(16): 4091-4104. [54] BORCHERS L, STIESCH M, BACH F W, et al. Influence of hydrothermal and mechanical conditions on the strength of zirconia[J]. Acta Biomaterialia, 2010, 6(12): 4547-4552. [55] SCHMAUDER S, SCHUBERT H. Significance of internal stresses for the martensitic transformation in yttria-stabilized tetragonal zirconia polycrystals during degradation[J]. Journal of the American Ceramic Society, 1986, 69(7): 534-540. [56] KREHER W, POMPE W. Internal stresses in heterogeneous solids[M]. Berlin: Akademie-Verlag, 1989. [57] YOSHIMURA M, NOMA T, KAWABATA K, et al. Role of H2O on the degradation process of Y-TZP[J]. Journal of Materials Science Letters, 1987, 6(4): 465-467. [58] CATTANI-LORENTE M, SCHERRER S S, AMMANN P, et al. Low temperature degradation of a Y-TZP dental ceramic[J]. Acta Biomaterialia, 2011, 7(2): 858-865. [59] YOSHIMURA M, NOMA T, KAWABATA K, et al. Role of H2O on the degradation process of Y-TZP[J]. Journal of Materials Science Letters, 1987, 6(4): 465-467. [60] BUČEVAC D, KOSMAČ T, KOCJAN A. The influence of yttrium-segregation-dependent phase partitioning and residual stresses on the aging and fracture behaviour of 3Y-TZP ceramics[J]. Acta Biomaterialia, 2017, 62: 306-316. [61] OHMICHI N, KAMIOKA K, UEDA K, et al. Phase transformation of zirconia ceramics by annealing in hot water (part 2).[J]. Journal of the Ceramic Society of Japan, 1999, 107(1249): 820-826. [62] MATSUI K, YOSHIDA H, IKUHARA Y. Nanocrystalline, ultra-degradation-resistant zirconia: its grain boundary nanostructure and nanochemistry[J]. Scientific Reports, 2014, 4(1): 4758. [63] WEI C, GREMILLARD L. Towards the prediction of hydrothermal ageing of 3Y-TZP bioceramics from processing parameters[J]. Acta Materialia, 2018, 144: 245-256. [64] KIM D J, JUNG H J, CHO D H. Phase transformations of Y2O3 and Nb2O5 doped tetragonal zirconia during low temperature aging in air[J]. Solid State Ionics, 1995, 80(1/2): 67-73. [65] GUO X. On the degradation of zirconia ceramics during low-temperature annealing in water or water vapor[J]. Journal of Physics and Chemistry of Solids, 1999, 60(4): 539-546. [66] GUO X. Hydrothermal degradation mechanism of tetragonal Zirconia[J]. Journal of Materials Science, 2001, 36(15): 3737-3744. [67] GUO X, SCHOBER T. Water incorporation in tetragonal zirconia[J]. Journal of the American Ceramic Society, 2004, 87(4): 746-748. [68] SCHUBERT H, FREY F. Stability of Y-TZP during hydrothermal treatment: neutron experiments and stability considerations[J]. Journal of the European Ceramic Society, 2005, 25(9): 1597-1602. [69] CHEVALIER J, GREMILLARD L, VIRKAR A V, et al. The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends[J]. Journal of the American Ceramic Society, 2009, 92(9): 1901-1920. [70] LI P, CHEN I W, PENNER-HAHN J E. Effect of dopants on zirconia stabilization: an X-ray absorption study: I, trivalent dopants[J]. Journal of the American Ceramic Society, 1994, 77(1): 118-128. [71] HO S M. On the structural chemistry of zirconium oxide[J]. Materials Science and Engineering, 1982, 54(1): 23-29. [72] 路新瀛, 梁开明, 顾守仁, 等. 氧空位对氧化锆相结构稳定性及相变过程的影响[J]. 硅酸盐学报, 1996, 24(6): 670-674. LU X Y, LIANG K M, GU S R, et al. Influence of oxygen vacancy on phase structure and transformation of zirconia[J]. Journal of the Chinese Ceramic Society, 1996, 24(6): 670-674 (in Chinese). [73] GUO X. Property degradation of tetragonal zirconia induced by low-temperature defect reaction with water molecules[J]. Chemistry of Materials, 2004, 16(21): 3988-3994. [74] NOWICKA A, EL-MAGHRABY H F, ŠVANČÁRKOVÁ A, et al. Corrosion and low temperature degradation of 3Y-TZP dental ceramics under acidic conditions[J]. Journal of the European Ceramic Society, 2020, 40(15): 6114-6122. [75] PANDOLEON P, KONTONASAKI E, KANTIRANIS N, et al. Aging of 3Y-TZP dental zirconia and yttrium depletion[J]. Dental Materials, 2017, 33(11): e385-e392. [76] MATSUI K, NAKAMURA K, SAITO M, et al. Low-temperature degradation in yttria-stabilized tetragonal zirconia polycrystal: effect of Y3+ distribution in grain interiors[J]. Acta Materialia, 2022, 227: 117659. [77] MATSUI K, HORIKOSHI H, OHMICHI N, et al. Cubic-formation and grain-growth mechanisms in tetragonal zirconia polycrystal[J]. Journal of the American Ceramic Society, 2003, 86(8): 1401-1408. [78] MATSUI K, OHMICHI N, OHGAI M, et al. Grain boundary segregation-induced phase transformation in yttria-stabilized tetragonal zirconia polycrystal[J]. Journal of the Ceramic Society of Japan, 2006, 114(1327): 230-237. [79] MATSUI K, YOSHIDA H, IKUHARA Y. Grain-boundary structure and microstructure development mechanism in 2~8 mol% yttria-stabilized zirconia polycrystals[J]. Acta Materialia, 2008, 56(6): 1315-1325. [80] MUÑOZ-TABARES J A, JIMÉNEZ-PIQUÉ E, ANGLADA M. Subsurface evaluation of hydrothermal degradation of zirconia[J]. Acta Materialia, 2011, 59(2): 473-484. [81] RAUH E G, GARG S P. The ZrO2-x (cubic)-ZrO2-x (cubic+tetragonal) phase boundary[J]. Journal of the American Ceramic Society, 1980, 63(3/4): 239-240. [82] RUH R, GARRETT H J. Nonstoichiometry of ZrO2 and its relation to tetragonal-cubic inversion in ZrO2[J]. Journal of the American Ceramic Society, 1967, 50(5): 257-261. [83] RUH R. Proposed phase diagram for the system ZrO2[J]. Journal of the American Ceramic Society, 1970: 360. [84] RAMESH S, SARA LEE K Y, TAN C Y. A review on the hydrothermal ageing behaviour of Y-TZP ceramics[J]. Ceramics International, 2018, 44(17): 20620-20634. [85] ZHANG F, VANMEENSEL K, BATUK M, et al. Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation[J]. Acta Biomaterialia, 2015, 16: 215-222. [86] NOGIWA-VALDEZ A A, RAINFORTH W M, ZENG P, et al. Deceleration of hydrothermal degradation of 3Y-TZP by alumina and lanthana co-doping[J]. Acta Biomaterialia, 2013, 9(4): 6226-6235. [87] ZHANG F, VANMEENSEL K, INOKOSHI M, et al. Critical influence of alumina content on the low temperature degradation of 2~3 mol% yttria-stabilized TZP for dental restorations[J]. Journal of the European Ceramic Society, 2015, 35(2): 741-750. [88] MATSUI K, NAKAMURA K, KUMAMOTO A, et al. Low-temperature degradation in yttria-stabilized tetragonal zirconia polycrystal doped with small amounts of alumina: effect of grain-boundary energy[J]. Journal of the European Ceramic Society, 2016, 36(1): 155-162. [89] TREDICI I G, SEBASTIANI M, MASSIMI F, et al. Low temperature degradation resistant nanostructured yttria-stabilized zirconia for dental applications[J]. Ceramics International, 2016, 42(7): 8190-8197. [90] ARAGÓN-DUARTE M C, NEVAREZ-RASCÓN A, ESPARZA-PONCE H E, et al. Nanomechanical properties of zirconia- yttria and alumina zirconia- yttria biomedical ceramics, subjected to low temperature aging[J]. Ceramics International, 2017, 43(5): 3931-3939. [91] HARADA A, SHISHIDO S, BARKARMO S, et al. Mechanical and microstructural properties of ultra-translucent dental zirconia ceramic stabilized with 5 mol% yttria[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 111: 103974. [92] ZHANG F, VAN MEERBEEK B, VLEUGELS J. Importance of tetragonal phase in high-translucent partially stabilized zirconia for dental restorations[J]. Dental Materials, 2020, 36(4): 491-500. [93] DOS SANTOS C, ROSA G O, QUINTINO M N, et al. Effect of surface finishing and thickness on the translucency of zirconia dental ceramics[J]. Ceramics International, 2020, 46(6): 7748-7755. [94] HAYAISHI Y, MIKI H, YOSHIKAWA H, et al. Phase transformation of a new generation yttria-stabilized zirconia femoral head after total hip arthroplasty[J]. Modern Rheumatology, 2008, 18(6): 647-650. [95] PRADO P H C O, MONTEIRO J B, CAMPOS T M B, et al. Degradation kinetics of high-translucency dental zirconias: mechanical properties and in-depth analysis of phase transformation[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102: 103482. |
[1] | 孙悦, 刘小青, 何峰, 邓玉华, 李润国, 张超, 郑现明, 谢峻林. 煅烧温度对低品位黏土物相和结构的影响[J]. 硅酸盐通报, 2023, 42(4): 1309-1314. |
[2] | 向吉朝, 杨曌, 熊浩, 汪裕章. SMAF/PVA混杂纤维增强水泥基复合材料梁自复位与耗能性能试验研究[J]. 硅酸盐通报, 2023, 42(3): 808-815. |
[3] | 王家燕, 董博, 余超, 邓承继, 丁军, 祝洪喜. 四元矿化剂对硅砖微观形貌及物理性能的影响[J]. 硅酸盐通报, 2023, 42(3): 1115-1121. |
[4] | 王含, 沈瑞麟, 王鸿妹, 汪庆卫. 晶相组成对硅质耐火材料抗碱侵蚀性能的影响[J]. 硅酸盐通报, 2023, 42(3): 1130-1136. |
[5] | 樊璐洋, 金子豪, 苏英, 崔程嘉, 王斌. 基于响应面法的半水磷石膏复合胶凝材料优化设计及性能研究[J]. 硅酸盐通报, 2023, 42(2): 626-636. |
[6] | 王济伟, 李家科, 刘欣, 江和栋, 郭平春, 朱华, 王艳香. 核桃壳粉为碳源制备C@ZrSiO4黑色色料[J]. 硅酸盐通报, 2023, 42(2): 657-665. |
[7] | 邢磊, 杜培培, 龙跃. 熔分赤泥熔渣纤维化过程中熔体性能研究[J]. 硅酸盐通报, 2022, 41(9): 3162-3169. |
[8] | 高强, 梅开元, 王德坤, 张力为, 张春梅, 程小伟. CCUS环境下水泥单矿C3S的CO2腐蚀动力学研究[J]. 硅酸盐通报, 2022, 41(8): 2644-2653. |
[9] | 张粤, 王宏杰, 杨林, 陈鸿, 曹建新. 磷石膏粒径对湿拌砂浆性能及微观结构的影响研究[J]. 硅酸盐通报, 2022, 41(8): 2836-2843. |
[10] | 魏宁, 柳馨, 铁生年, 汪长安. 形态稳定的Na2SO4·10H2O-Na2HPO4·12H2O共晶盐相变储能材料的制备及热性能提升[J]. 硅酸盐通报, 2022, 41(7): 2533-2541. |
[11] | 李润丰, 刘艳军, 涂玉波, 王林俊, 温晓庆, 任磊. 石墨烯增强复合相变储能材料的热学性能研究[J]. 硅酸盐通报, 2022, 41(7): 2542-2548. |
[12] | 毛利民, 李庆元, 杨海云, 曾海军, 刘继旺, 卿晓斌, 王智勇, 朱伟, 杨智超. 含Y2O3熔铸41#AZS材料抗玻璃液侵蚀性能研究[J]. 硅酸盐通报, 2022, 41(4): 1195-1201. |
[13] | 薄艾, 张大江, 王璜琪, 王栋民, 王启宝, 刘泽. 煅烧工艺对天然水硬性石灰中硅酸二钙晶相转变的影响[J]. 硅酸盐通报, 2022, 41(4): 1336-1342. |
[14] | 刘汉昌, 朱桂花, 吕硕, 赵妤, 张盼, 陈丰. 相变介质组成对粉煤灰基高温定形复合相变材料蓄热性能的影响[J]. 硅酸盐通报, 2022, 41(2): 597-606. |
[15] | 吴建锋, 吴昌虎, 徐晓虹, 田克忠, 刘洋, 马思童. 利用黄金尾矿制备陶瓷清水砖的研究[J]. 硅酸盐通报, 2022, 41(2): 640-648. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||