[1] 贵州省交通运输厅. 贵州特殊土填方路基设计与施工[M]. 北京: 人民交通出版社, 2015: 11. Department of Transportation of Guizhou Province. Design and construction of special earth fill roadbed in Guizhou[M]. Beijing: China Communications Press, 2015: 11 (in Chinese). [2] 何毅东. 关于红粘土的若干问题研究[D]. 南宁: 广西大学, 2007. HE Y D. Several study on red clay[D]. Nanning: Guangxi University, 2007 (in Chinese). [3] 李世贵, 张中翔, 黄 媛, 等. 高液限红粘土路用特性与沉降变形规律[J]. 公路交通科技(应用技术版), 2018, 14(6): 90-91. LI S G, ZHANG Z X, HUANG Y, et al. Road characteristics and settlement deformation law of high liquid limit red clay[J]. Highway Traffic Technology (Applied Technology Edition), 2018, 14(6): 90-91 (in Chinese). [4] PONGSIVASATHIT S, HORPIBULSUK S, PIYAPHIPAT S. Assessment of mechanical properties of cement stabilized soils[J]. Case Studies in Construction Materials, 2019, 11: e00301. [5] AZZAM W R. Utilization of polymer stabilization for improvement of clay microstructures[J]. Applied Clay Science, 2014, 93/94: 94-101. [6] 刘之葵, 邱晓娟, 雷 轶. 水泥改良桂林红粘土的试验研究[J]. 公路工程, 2016, 41(1): 6-9+19. LIU Z K, QIU X J, LEI Y. The test study on Guilin cement improved red-clay[J]. Highway Engineering, 2016, 41(1): 6-9+19 (in Chinese). [7] 韩 青, 罗康碧, 李沪萍, 等. 磷石膏开发利用现状[J]. 化工科技, 2012, 20(1): 53-58. HAN Q, LUO K B, LI H P, et al. Development and utilization status on the phosphogypsum[J]. Science & Technology in Chemical Industry, 2012, 20(1): 53-58 (in Chinese). [8] 陈惠云. 贵州磷化磷石膏资源化利用现状[J]. 硫酸工业, 2019(7): 5-6+10. CHEN H Y. Utilization of phosphogypsum resources in Guizhou Linhua[J]. Sulphuric Acid Industry, 2019(7): 5-6+10 (in Chinese). [9] 徐雪源, 徐玉中, 陈桂松, 等. 磷石膏-粉煤灰-石灰-粘土混合料的干缩试验研究[J]. 中南公路工程, 2006, 31(4): 113-114+119. XU X Y, XU Y Z, CHEN G S, et al. Testing study on the dry shrinkage property of mixtures of phosphogypsumf-ly ashl-ime-clay[J]. Journal of Central South Highway Engineering, 2006, 31(4): 113-114+119 (in Chinese). [10] 李俊鹏, 谭 维. 磷石膏在公路路基中的应用研究[J]. 低碳世界, 2018, 8(11): 227-228. LI J P, TAN W. Study on application of phosphogypsum in highway subgrade[J]. Low Carbon World, 2018, 8(11): 227-228 (in Chinese). [11] 钱正富, 李志清, 刘 琪, 等. 硅酸钠改良磷石膏的微观结构定量分析研究[J]. 公路交通科技(应用技术版), 2020, 16(2): 122-125. QIAN Z F, LI Z Q, LIU Q, et al. Quantitative analysis of microstructure of modified sodium silicate phosphogypsum[J]. Highway Traffic Technology (Applied Technology Edition), 2020, 16(2): 122-125 (in Chinese). [12] 彭 波, 尚文勇, 赵宏伟, 等. 磷石膏综合稳定土力学性能及合理掺量研究[J]. 新型建筑材料, 2020, 47(8): 86-90+127. PENG B, SHANG W Y, ZHAO H W, et al. Study on mechanical properties and rational addition of phosphogypsum comprehensive stabilized soil[J]. New Building Materials, 2020, 47(8): 86-90+127 (in Chinese). [13] 彭 波, 张 晶, 杨征文, 等. 基于LCA的磷石膏石灰稳定土环境影响评价[J]. 重庆交通大学学报(自然科学版), 2022, 41(1): 111-115+132. PENG B, ZHANG J, YANG Z W, et al. Environmental impact assessment of phosphogypsum lime stabilized soil based on LCA[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(1): 111-115+132 (in Chinese). [14] 周明凯, 张晓乔, 陈 潇, 等. 水泥磷石膏稳定碎石路面基层材料性能研究[J]. 公路, 2016, 61(4): 186-190. ZHOU M K, ZHANG X Q, CHEN X, et al. Research on properties of phosphogypsum cement stabilized gravel road base materials[J]. Highway, 2016, 61(4): 186-190 (in Chinese). [15] 刘志华, 杨久俊, 陈 兵. 磷石膏粉煤灰改性生土材料试验研究[J]. 粉煤灰综合利用, 2016, 30(1): 3-6+11. LIU Z H, YANG J J, CHEN B. Experimental study on properties of modified raw soil material adding phosphogypsum and fly ash[J]. Fly Ash Comprehensive Utilization, 2016, 30(1): 3-6+11 (in Chinese). [16] FARROUKH H, MNIF T, KAMOUN F, et al. Stabilization of clayey soils with Tunisian phosphogypsum: effect on geotechnical properties[J]. Arabian Journal of Geosciences, 2018, 11(23): 760. [17] 许士钊, 查甫生, 潘东冬. 水泥-碱渣加固软土试验研究[J]. 山西建筑, 2019, 45(16): 44-46. XU S Z, ZHA F S, PAN D D. Experimental study on soft soil reinforced with cement-soda residue[J]. Shanxi Architecture, 2019, 45(16): 44-46 (in Chinese). [18] 陈 乾, 刘 凯, 王希贤, 等. 福建柏混交林主要土壤理化性质与土壤含水量的关联研究[J]. 福建农林大学学报(自然科学版), 2021, 50(6): 771-780. CHEN Q, LIU K, WANG X X, et al. Correlation between main soil physiochemical properties and soil water content under Fokienia hodginsii mixed forests[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2021, 50(6): 771-780 (in Chinese). [19] 王 楠. 二水硫酸钙对水中粘土颗粒的捕集机理及脱泥的研究[D]. 太原: 山西大学, 2015. WANG N. Research of removal and capture mechanism of clay particles by calcium sulfate dihydrate[D]. Taiyuan: Shanxi University, 2015 (in Chinese). [20] CAPOTOSTO A, RUSSO G. Effects of pore-water pH and calcium concentration on the microstructure of kaolin[J]. Géotechnique Letters, 2020, 10(1): 38-44. [21] 魏作安, 路 停, 李世龙, 等. 磷石膏物理力学性质的试验研究[J]. 非金属矿, 2020, 43(2): 34-37. WEI Z A, LU T, LI S L, et al. Experimental study on physical and mechanical properties of phosphogypsum[J]. Non-Metallic Mines, 2020, 43(2): 34-37 (in Chinese). [22] 张 庆. 固化疏浚淤泥-磷石膏混合土工程性质及膨胀特性研究[D]. 昆明: 昆明理工大学, 2013. ZHANG Q. Studay on the engineering and expansive properties of solidified dredged sludge-phosphogypsum blends[D]. Kunming: Kunming University of Science and Technology, 2013 (in Chinese). [23] 张晓乔. 磷石膏基路面基层材料的组成设计与性能研究[D]. 武汉: 武汉理工大学, 2016. ZHANG X Q. Study on component design and road performances of phosphogypsum-based road base material[D]. Wuhan: Wuhan University of Technology, 2016 (in Chinese). [24] 吴 孟, 李善梅. 水土化学作用下红黏土抗剪强度的微观力学机理[C]//2021年工业建筑学术交流会论文集(下册). 北京, 2021: 687-691+686. WU M, LI S M. Micromechanical mechanism of shear strength of red clay under soil and water chemistry[C]//Proceedings of the 2021 Industrial Architecture Academic Exchange Conference (Volume 2). Beijing, 2021: 687-691+686 (in Chinese). [25] 马 琳, 王 清, 原国红. 红土中游离氧化铁胶结作用的微观研究[J]. 河北工程大学学报(自然科学版), 2007, 24(1): 27-31. MA L, WANG Q, YUAN G H. Study on the microstructure of cementation function of free iron oxide in red soil[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2007, 24(1): 27-31 (in Chinese). [26] RAJKOVIC M, TOSKOVIC D V. Phosphogypsum surface characterisation using scanning electron microscopy[J]. Acta Periodica Technologica, 2003(34): 61-70. |