[1] IBARRA-RODRÍGUEZ M, SÁNCHEZ M. Graphitic carbon nitride functionalized with four boron atoms for adsorption and separation of CO2/CH4: DFT calculations[J]. Adsorption, 2020, 26(4): 597-605. [2] AHMADI PEYGHAN A, HADIPOUR N L, BAGHERI Z. Effects of Al doping and double-antisite defect on the adsorption of HCN on a BC2N nanotube: density functional theory studies[J]. The Journal of Physical Chemistry C, 2013, 117(5): 2427-2432. [3] ZHAO Z C, XIE Y B. Electrochemical supercapacitor performance of boron and nitrogen co-doped porous carbon nanowires[J]. Journal of Power Sources, 2018, 400: 264-276. [4] WU J J, RODRIGUES M T F, VAJTAI R, et al. Tuning the electrochemical reactivity of boron- and nitrogen-substituted graphene[J]. Advanced Materials (Deerfield Beach, Fla), 2016, 28(29): 6239-6246. [5] GUO X, WANG D, GUO Z, et al. SiBCN-precursor-derived gradient oxidation protective ceramic coating for C/C composites[J]. Surface and Coatings Technology, 2018, 350: 101-109. [6] JIA H C, LI J, LIU Z Y, et al. Three-dimensional carbon boron nitrides with a broken, hollow, spherical shell for water treatment[J]. RSC Advances, 2016, 6(82): 78252-78256. [7] WANG P F, WANG P F, GUO Y, et al. Selective recovery of protonated dyes from dye wastewater by pH-responsive BCN material[J]. Chemical Engineering Journal, 2021, 412: 128532. [8] LIU Z W, ZHAO K, LUO J, et al. Highly efficient synthesis of hexagonal boron nitride short fibers with adsorption selectivity[J]. Ceramics International, 2019, 45(17): 22394-22401. [9] WANG S Y, WANG G, WU T T, et al. BCN nanosheets templated by g-C3N4 for high performance capacitive deionization[J]. Journal of Materials Chemistry A, 2018, 6(30): 14644-14650. [10] 杨 琼,王传彬,章 嵩,等.硼碳氮薄膜的脉冲激光沉积及其光学性能[J].功能材料与器件学报,2010,16(4):358-362. YANG Q, WANG C B, ZHANG S, et al. Pulsed laser deposition and optical properties of BCN thin films[J]. Journal of Functional Materials and Devices, 2010, 16(4): 358-362 (in Chinese). [11] SUGIYAMA T, TAI T, SUGINO T. Effect of annealing on dielectric constant of boron carbon nitride films synthesized by plasma-assisted chemical vapor deposition[J]. Applied Physics Letters, 2002, 80(22): 4214-4216. [12] ULRICH S, KRATZSCH A, LEISTE H, et al. Variation of carbon concentration, ion energy, and ion current density of magnetron-sputtered boron carbonitride films[J]. Surface and Coatings Technology, 1999, 116/117/118/119: 742-750. [13] LINSS V, HERMANN I, SCHWARZER N, et al. Mechanical properties of thin films in the ternary triangle B-C-N[J]. Surface and Coatings Technology, 2003, 163/164: 220-226. [14] LIN T W, SU C Y, ZHANG X Q, et al. Converting graphene oxide monolayers into boron carbonitride nanosheets by substitutional doping[J]. Small (Weinheim an Der Bergstrasse, Germany), 2012, 8(9): 1384-1391. [15] ZHENG Y, JIAO Y, GE L, et al. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis[J]. Angewandte Chemie (International Ed in English), 2013, 52(11): 3110-3116. [16] 梁丹丹,李兴发,王朝旭.硼、氮掺杂碳纳米管对苯酚废水催化降解的差异[J].工业水处理,2021,41(9):86-91. LIANG D D, LI X F, WANG C X. Differences in catalytic degradation of phenol wastewater with boron and nitrogen doped carbon nanotubes[J]. Industrial Water Treatment, 2021, 41(9): 86-91 (in Chinese). [17] 姚伯元,黄广民,窦智峰,等.海南椰壳与椰壳渣制备高比表面积活性炭原料脱灰工艺[J].化工学报,2006,57(6):1458-1463. YAO B Y, HUANG G M, DOU Z F, et al. Demineralization of Hainan coconut shell and its residue for preparing high surface area activated carbon[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(6): 1458-1463 (in Chinese). [18] WANG G, ZHANG Y Q, WANG S Y, et al. Adsorption performance and mechanism of antibiotics from aqueous solutions on porous boron nitride-carbon nanosheets[J]. Environmental Science: Water Research & Technology, 2020, 6(6): 1568-1575. [19] KARBHAL I, DEVARAPALLI R R, DEBGUPTA J, et al. Facile green synthesis of BCN nanosheets as high-performance electrode material for electrochemical energy storage[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2016, 22(21): 7134-7140. [20] CI L J, SONG L, JIN C H, et al. Atomic layers of hybridized boron nitride and graphene domains[J]. Nature Materials, 2010, 9(5): 430-435. [21] FELLINGER T P, SU D S, ENGENHORST M, et al. Thermolytic synthesis of graphitic boron carbon nitride from an ionic liquid precursor: mechanism, structure analysis and electronic properties[J]. Journal of Materials Chemistry, 2012, 22(45): 23996. [22] HASSAN J, IKRAM M, UL-HAMID A, et al. Application of chemically exfoliated boron nitride nanosheets doped with Co to remove organic pollutants rapidly from textile water[J]. Nanoscale Research Letters, 2020, 15: 75. [23] AL-KINANI A, GHEIBI M, EFTEKHARI M. Graphene oxide-tannic acid nanocomposite as an efficient adsorbent for the removal of malachite green from water samples[J]. Modeling Earth Systems and Environment, 2019, 5(4): 1627-1633. [24] ALI H B, ISMAIL A M. Developing montmorillonite/PVDF/PEO microporous membranes for removal of malachite green: adsorption, isotherms, and kinetics[J]. Journal of Polymer Research, 2021, 28(11): 1-17. [25] JIANG F, DINH D M, HSIEH Y L. Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels[J]. Carbohydrate Polymers, 2017, 173: 286-294. [26] MITTAL H, MORAJKAR P P, AL ALILI A, et al. In-situ synthesis of ZnO nanoparticles using gum Arabic based hydrogels as a self-template for effective malachite green dye adsorption[J]. Journal of Polymers and the Environment, 2020, 28(6): 1637-1653. [27] PAN X H, ZUO G C, SU T, et al. Polycarboxylic magnetic polydopamine sub-microspheres for effective adsorption of malachite green[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 560: 106-113. [28] QU W Y, YUAN T, YIN G J, et al. Effect of properties of activated carbon on malachite green adsorption[J]. Fuel, 2019, 249: 45-53. [29] SHI Z N, LI L, XIAO Y X, et al. Synthesis of mixed-ligand Cu-MOFs and their adsorption of malachite green[J]. RSC Advances, 2017, 7(49): 30904-30910. [30] LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society, 1918, 40(9): 1361-1403. [31] MORENO-CASTILLA C. Adsorption of organic molecules from aqueous solutions on carbon materials[J]. Carbon, 2004, 42(1): 83-94. [32] PENG X M, HU F P, LAM F L Y, et al. Adsorption behavior and mechanisms of ciprofloxacin from aqueous solution by ordered mesoporous carbon and bamboo-based carbon[J]. Journal of Colloid and Interface Science, 2015, 460: 349-360. [33] YUAN J, FENG L, WANG J X. Rapid adsorption of naphthalene from aqueous solution by naphthylmethyl derived porous carbon materials[J]. Journal of Molecular Liquids, 2020, 304: 112768. [34] JI L L, WAN Y Q, ZHENG S R, et al. Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: implication for the relative importance of black carbon to soil sorption[J]. Environmental Science & Technology, 2011, 45(13): 5580-5586. [35] TIAN S J, DAI J D, JIANG Y H, et al. Facile preparation of intercrossed-stacked porous carbon originated from potassium citrate and their highly effective adsorption performance for chloramphenicol[J]. Journal of Colloid and Interface Science, 2017, 505: 858-869. [36] PEYRAVI A, HASHISHO Z, CROMPTON D, et al. Porous carbon black-polymer composites for volatile organic compound adsorption and efficient microwave-assisted desorption[J]. Journal of Colloid and Interface Science, 2022, 612: 181-193. |