[1] PARSHIN V, SEROV E, DENISOV G, et al. Silicon carbide for high-power applications at MM and THz ranges[J]. Diamond and Related Materials, 2017, 80: 1-4. [2] XU M, GIRISH Y R, RAKESH K P, et al. Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications[J]. Materials Today Communications, 2021, 28: 102533. [3] WANG X L, GAO X D, ZHANG Z H, et al. Advances in modifications and high-temperature applications of silicon carbide ceramic matrix composites in aerospace: a focused review[J]. Journal of the European Ceramic Society, 2021, 41(9): 4671-4688. [4] KATOH Y, SNEAD L L. Silicon carbide and its composites for nuclear applications-historical overview[J]. Journal of Nuclear Materials, 2019, 526: 151849. [5] MOSKOVSKIKH D O, SONG Y, ROUVIMOV S, et al. Silicon carbide ceramics: mechanical activation, combustion and spark plasma sintering[J]. Ceramics International, 2016, 42(11): 12686-12693. [6] ZHANG Y Y, HSU C Y, AUBUCHON S, et al. Microstructural and thermal property evolution of reaction bonded silicon carbide (RBSC)[J]. Journal of Alloys and Compounds, 2018, 764: 107-111. [7] GRIFFITH A A. The phenomena of rupture and flow in solid[J]. Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences, 1920, A221(4): 163-198. [8] SILVESTRONI L, SCITI D. Microstructure evolution upon annealing of a ZrB2-SiC composite containing lanthana and magnesia[J]. Journal of the European Ceramic Society, 2013, 33(2): 403-412. [9] CHEN F, LI X P, WU J Y, et al. Effect of post-annealing on the electrical conductivity of spark plasma sintered antimony-doped tin oxide (ATO) ceramics[J]. Scripta Materialia, 2013, 68(5): 297-300. [10] RUEANNGOEN A, KANAZAWA K, IMAI M, et al. Analysis of recovery process of low-dose neutron irradiation-induced defects in silicon nitride-based ceramics by thermal annealing[J]. Journal of Nuclear Materials, 2014, 455(1/2/3): 464-469. [11] SONG Q, ZHANG Z H, HU Z Y, et al. Influences of the pre-oxidation time on the microstructure and flexural strength of monolithic B4C ceramic and TiB2-SiC/B4C composite ceramic[J]. Journal of Alloys and Compounds, 2020, 831: 154852. [12] WANG Z, QU Q, WU Z J, et al. Effect of oxidation at 1 100 ℃ on the strength of ZrB2-SiC-graphite ceramics[J]. Journal of Alloys and Compounds, 2011, 509(24): 6871-6875. [13] 包亦望,孙 熠,旷峰华,等.高强度预应力陶瓷的发展与探索[J].无机材料学报,2020,35(4):399-406. BAO Y W, SUN Y, KUANG F H, et al. Development and prospects of high strength pre-stressed ceramics[J]. Journal of Inorganic Materials, 2020, 35(4): 399-406 (in Chinese). [14] CHEONG D I, KIM J, KANG S J L. Effects of isothermal annealing on the microstructure and mechanical properties of SiC ceramics hot-pressed with Y2O3 and Al2O3 additions[J]. Journal of the European Ceramic Society, 2002, 22(8): 1321-1327. [15] ZHANG X H, XU L, DU S Y, et al. Crack-healing behavior of zirconium diboride composite reinforced with silicon carbide whiskers[J]. Scripta Materialia, 2008, 59(11): 1222-1225. [16] OGBUJI L U J T, SINGH M. High-temperature oxidation behavior of reaction-formed silicon carbide ceramics[J]. Journal of Materials Research, 1995, 10(12): 3232-3240. [17] 包亦望.先进陶瓷力学性能评价方法与技术[M].北京:中国建材工业出版社,2017. BAO Y W. Advanced ceramic mechanical properties evaluation method and technology[M]. Beijing: China Building Materials Industry Press, 2017 (in Chinese). [18] EL SHAFEI K, AL NASIRI N. Oxidation of reaction-bonded silicon carbide-boron carbide in air[J]. Ceramics International, 2021, 47(12): 17463-17470. [19] 魏明坤,张丽鹏,武七德.渗硅碳化硅材料的高温氧化[J].硅酸盐通报,2001,20(4):52-55. WEI M K, ZHANG L P, WU Q D. High temperature oxidation behavior of melt-infiltrated silicon carbide[J]. Bulletin of Thechinese Ceramic Society, 2001, 20(4): 52-55 (in Chinese). [20] CHEN S Y, ZENG Y, XIONG X, et al. Static and dynamic oxidation behaviour of silicon carbide at high temperature[J]. Journal of the European Ceramic Society, 2021, 41(11): 5445-5456. [21] LEE S K, ISHIDA W, LEE S Y, et al. Crack-healing behavior and resultant strength properties of silicon carbide ceramic[J]. Journal of the European Ceramic Society, 2005, 25(5): 569-576. [22] OGBUJI L U. Development of oxide scale microstructure on single-crystal SiC[J]. Journal of Materials Science, 1981, 16(10): 2753-2759. [23] RODRÍGUEZ-ROJAS F, ORTIZ A L, GUIBERTEAU F, et al. Oxidation behaviour of pressureless liquid-phase-sintered α-SiC with additions of 5Al2O3+3RE2O3 (RE=La, Nd, Y, Er, Tm, or Yb)[J]. Journal of the European Ceramic Society, 2010, 30(15): 3209-3217. [24] CHU M C, CHO S J, PARK H M, et al. Crack-healing in reaction-bonded silicon carbide[J]. Materials Letters, 2004, 58(7/8): 1313-1316. |