[1] TONG R A, CHEN L H, FAN B B, et al. Solvent-free process for blended PVDF-HFP/PEO and LLZTO composite solid electrolytes with enhanced mechanical and electrochemical properties for lithium metal batteries[J]. ACS Applied Energy Materials, 2021, 4(10): 11802-11812. [2] MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2: 16103. [3] AGRAWAL R C, GUPTA R K. Superionic solid: composite electrolyte phase: an overview[J]. Journal of Materials Science, 1999, 34(6): 1131-1162. [4] 林碧霞,林小燕,邢震宇.稀土元素掺杂锂离子固态电解质的研究进展[J].中国稀土学报,2021,39(5):682-697. LIN B X, LIN X Y, XING Z Y. Research advances of lithium-ion solid electrolytes doped with rare-earth elements[J]. Journal of the Chinese Society of Rare Earths, 2021, 39(5): 682-697 (in Chinese). [5] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angewandte Chemie International Edition, 2007, 46(41): 7778-7781. [6] KRAUSKOPF T, DIPPEL R, HARTMANN H, et al. Lithium-metal growth kinetics on LLZO garnet-type solid electrolytes[J]. Joule, 2019, 3(8): 2030-2049. [7] SHEN Y B, ZHANG Y T, HAN S J, et al. Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes[J]. Joule, 2018, 2(9): 1674-1689. [8] RAMAKUMAR S, DEVIANNAPOORANI C, DHIVYA L, et al. Lithium garnets: synthesis, structure, Li+ conductivity, Li+ dynamics and applications[J]. Progress in Materials Science, 2017, 88: 325-411. [9] PERVEZ S A, CAMBAZ M A, THANGADURAI V, et al. Interface in solid-state lithium battery: challenges, progress, and outlook[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22029-22050. [10] ZHAO N, KHOKHAR W, BI Z J, et al. Solid garnet batteries[J]. Joule, 2019, 3(5): 1190-1199. [11] 张 阳.固态锂金属电池中石榴石型固态电解质/负极界面的改性研究[D].北京:中国科学院大学,2020. ZHANG Y. Interfacial modification of anode/garnet-type solid-state electrolyte in solid-state lithium metal batteries[D]. Beijing: University of Chinese Academy of Sciences, 2020 (in Chinese). [12] CUSSEN E J. Structure and ionic conductivity in lithium garnets[J]. Journal of Materials Chemistry, 2010, 20(25): 5167. [13] O'CALLAGHAN M P, CUSSEN E J. Lithium dimer formation in the Li-conducting garnets Li5+xBaxLa3-xTa2O12 (0<x≤1.6)[J]. Chemical Communications (Cambridge, England), 2007(20): 2048-2050. [14] THANGADURAI V, NARAYANAN S, PINZARU D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review[J]. Chemical Society Reviews, 2014, 43(13): 4714-4727. [15] O'CALLAGHAN M P, LYNHAM D R, CUSSEN E J, et al. Structure and ionic-transport properties of lithium-containing garnets Li3Ln3Te2O12 (Ln: Y, Pr, Nd, Sm-Lu)[J]. ChemInform, 2006, 37(50): 4681-4689. [16] THANGADURAI V, WEPPNER W. Li6ALa2Ta2O12 (A=Sr, Ba): novel garnet-like oxides for fast lithium ion conduction[J]. Advanced Functional Materials, 2005, 15(1): 107-112. [17] 姜鹏峰,石元盛,李康万,等.固态电解质锂镧锆氧(LLZO)的研究进展[J].储能科学与技术,2020,9(2):523-537. JIANG P F, SHI Y S, LI K W, et al. Recent progress on the Li7La3Zr2O12 (LLZO) solid electrolyte[J]. Energy Storage Science and Technology, 2020, 9(2): 523-537 (in Chinese). [18] AWAKA J, KIJIMA N, HAYAKAWA H, et al. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure[J]. Journal of Solid State Chemistry, 2009, 182(8): 2046-2052. [19] PERCIVAL J, KENDRICK E, SMITH R I, et al. Cation ordering in Li containing garnets: synthesis and structural characterisation of the tetragonal system, Li7La3Sn2O12[J]. Dalton Transactions, 2009(26): 5177. [20] WANG C W, FU K, KAMMAMPATA S P, et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries[J]. Chemical Reviews, 2020, 120(10): 4257-4300. [21] THOMPSON T, SHARAFI A, JOHANNES M D, et al. A tale of two sites: on defining the carrier concentration in garnet-based ionic conductors for advanced Li batteries[J]. Advanced Energy Materials, 2015, 5(11): 1500096. [22] PFENNINGER R, STRUZIK M, GARBAYO I, et al. A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films[J]. Nature Energy, 2019, 4(6): 475-483. [23] XIE H, ALONSO J A, LI Y T, et al. Lithium distribution in aluminum-free cubic Li7La3Zr2O12[J]. Chemistry of Materials, 2011, 23(16): 3587-3589. [24] WU J F, CHEN E Y, YU Y, et al. Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity[J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1542-1552. [25] YANG X F, KONG D B, CHEN Z P, et al. Low-temperature fabrication for transparency Mg doping Li7La3Zr2O12 solid state electrolyte[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(2): 1523-1529. [26] ZHOU X R, HUANG L W, ELKEDIM O, et al. Sr2+ and Mo6+ co-doped Li7La3Zr2O12 with superior ionic conductivity[J]. Journal of Alloys and Compounds, 2022, 891: 161906. [27] CAI L, WEN Z Y, RUI K. High ion conductivity in garnet-type F-doped Li7La3Zr2O12[J]. Journal of Inorganic Materials, 2015, 30(9): 995-1000. [28] HUANG X, LU Y, SONG Z, et al. Manipulating Li2O atmosphere for sintering dense Li7La3Zr2O12 solid electrolyte[J]. Energy Storage Materials, 2019, 22: 207-217. [29] DERMENCI K B. Improved Li-ion conduction by ion-conductor Li1.5Al0.5Ge1.5(PO4)3 additive in garnet type Li7La3Zr2O12 solid electrolytes[J]. Materials Chemistry and Physics, 2022, 281: 125910. [30] CASTILLO A, CHARPENTIER T, RAPAUD O, et al. Bulk Li mobility enhancement in spark plasma sintered Li(7-3x)AlxLa3Zr2O12 garnet[J]. Ceramics International, 2018, 44(15): 18844-18850. [31] LAPTEV A M, ZHENG H, BRAM M, et al. High-pressure field assisted sintering of half-cell for all-solid-state battery[J]. Materials Letters, 2019, 247: 155-158. [32] ZHA W P, XU Y H, CHEN F, et al. Cathode/electrolyte interface engineering via wet coating and hot pressing for all-solid-state lithium battery[J]. Solid State Ionics, 2019, 330: 54-59. [33] IHRIG M, MISHRA T P, SCHELD W S, et al. Li7La3Zr2O12 solid electrolyte sintered by the ultrafast high-temperature method[J]. Journal of the European Ceramic Society, 2021, 41(12): 6075-6079. [34] SHEN F, GUO W C, ZENG D Y, et al. A simple and highly efficient method toward high-density garnet-type LLZTO solid-state electrolyte[J]. ACS Applied Materials & Interfaces, 2020, 12(27): 30313-30319. [35] YANG L, DAI Q S, LIU L, et al. Rapid sintering method for highly conductive Li7La3Zr2O12 ceramic electrolyte[J]. Ceramics International, 2020, 46(8): 10917-10924. [36] YANG L, TAO X Y, HUANG X, et al. Efficient mutual-compensating Li-loss strategy toward highly conductive garnet ceramics for Li-metal solid-state batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(47): 56054-56063. [37] ZHENG J, HU Y Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 4113-4120. [38] 金英敏,李 栋,贾政刚,等.用于全固态锂电池的有机-无机复合电解质[J].原子与分子物理学报,2020,37(6):958-973. JIN Y M, LI D, JIA Z G, et al. Organic-inorganic composite electrolytes for all-solid-state lithium batteries[J]. Journal of Atomic and Molecular Physics, 2020, 37(6): 958-973 (in Chinese). [39] HUO H Y, CHEN Y, LUO J, et al. Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries[J]. Advanced Energy Materials, 2019, 9(17): 1804004. [40] CHEN L, LI Y T, LI S P, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”[J]. Nano Energy, 2018, 46: 176-184. [41] XIE H, YANG C P, FU K, et al. Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose[J]. Advanced Energy Materials, 2018, 8(18): 1703474. [42] FU K, GONG Y H, FU Z Z, et al. Transient behavior of the metal interface in lithium metal-garnet batteries[J]. Angewandte Chemie International Edition, 2017, 56(47): 14942-14947. [43] HAN X G, GONG Y H, FU K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2017, 16(5): 572-579. [44] FU J M, YU P F, ZHANG N, et al. In situ formation of a bifunctional interlayer enabled by a conversion reaction to initiatively prevent lithium dendrites in a garnet solid electrolyte[J]. Energy & Environmental Science, 2019, 12(4): 1404-1412. |