[1] 杨浩文,高文元.我国硅藻土的应用现状及展望[J].中国陶瓷工业,2013,20(3):18-20. YANG H W, GAO W Y. Application status and prospects of diatomite in China[J]. China Ceramic Industry, 2013, 20(3): 18-20 (in Chinese). [2] 胡 涛,马永梅,王 驰.硅藻土的应用研究进展[J].中国非金属矿工业导刊,2009(1):16-18+25. HU T, MA Y M, WANG C. Research progress of the application of diatomite[J]. China Non-Metallic Minerals Industry Herald, 2009(1): 16-18+25 (in Chinese). [3] YUAN C J, LI M, WANG M, et al. Sensitive development of latent fingerprints using Rhodamine B-diatomaceous earth composites and principle of efficient image enhancement behind their fluorescence characteristics[J]. Chemical Engineering Journal, 2020, 383: 123076. [4] ZHANG G X, SUN Z M, DUAN Y W, et al. Synthesis of nano-TiO2/diatomite composite and its photocatalytic degradation of gaseous formaldehyde[J]. Applied Surface Science, 2017, 412: 105-112. [5] 胡洪亮,高皓月.硅藻土基光催化复合材料研究进展[J].应用化工,2021,50(7):2002-2007. HU H L, GAO H Y. Research progress of diatomaceous earth based photocatalytic composites[J]. Applied Chemical Industry, 2021, 50(7): 2002-2007 (in Chinese). [6] MEI H, HUANG W Z, LIU H X, et al. 3D printed carbon-ceramic structures for enhancing photocatalytic properties[J]. Ceramics International, 2019, 45(12): 15223-15229. [7] LEFEVERE J, GYSEN M, MULLENS S, et al. The benefit of design of support architectures for zeolite coated structured catalysts for methanol-to-olefin conversion[J]. Catalysis Today, 2013, 216: 18-23. [8] ZOCCA A, COLOMBO P, GOMES C M, et al. Additive manufacturing of ceramics: issues, potentialities, and opportunities[J]. Journal of the American Ceramic Society, 2015, 98(7): 1983-2001. [9] DONG W C, MA H Q, LIU R Z, et al. Fabrication by stereolithography of fiber-reinforced fused silica composites with reduced crack and improved mechanical properties[J]. Ceramics International, 2021, 47(17): 24121-24129. [10] 胡 波,高宗强,鲍崇高.硅酸钙/β-磷酸三钙生物陶瓷的光固化成型工艺及性能研究[J].硅酸盐通报,2020,39(9):2950-2955. HU B, GAO Z Q, BAO C G. Preparation and properties of calcium silicate/β-tricalcium phosphate bioceramic by stereolithography[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(9): 2950-2955 (in Chinese). [11] LICCIULLI A, CORCIONE C E, GRECO A, et al. Laser stereolithography of ZrO2 toughened Al2O3[J]. Journal of the European Ceramic Society, 2005, 25(9): 1581-1589. [12] HINCZEWSKI C, CORBEL S, CHARTIER T. Ceramic suspensions suitable for stereolithography[J]. Journal of the European Ceramic Society, 1998, 18(6): 583-590. [13] ZHANG S, SHA N, ZHAO Z. Surface modification of α-Al2O3 with dicarboxylic acids for the preparation of UV-curable ceramic suspensions[J]. Journal of the European Ceramic Society, 2017, 37(4): 1607-1616. [14] KIM J H, CHANG W S, KIM D, et al. 3D printing of reduced graphene oxide nanowires[J]. Advanced Materials (Deerfield Beach, Fla), 2015, 27(1): 157-161. [15] CHEN Z W, LI J J, LIU C B, et al. Preparation of high solid loading and low viscosity ceramic slurries for photopolymerization-based 3D printing[J]. Ceramics International, 2019, 45(9): 11549-11557. [16] ZHANG K Q, XIE C, WANG G, et al. High solid loading, low viscosity photosensitive Al2O3 slurry for stereolithography based additive manufacturing[J]. Ceramics International, 2019, 45(1): 203-208. [17] GRIFFITH M L, HALLORAN J W. Freeform fabrication of ceramics via stereolithography[J]. Journal of the American Ceramic Society, 2005, 79(10): 2601-2608. |