[1] HU F, XIE Z P, ZHANG J, et al. Promising high-thermal-conductivity substrate material for high-power electronic device: silicon nitride ceramics[J]. Rare Metals, 2020, 39(5): 463-478. [2] WANG W D, YAO D X, LIANG H Q, et al. Effect of in situ formed Y2O3 by metal hydride reduction reaction on thermal conductivity of β-Si3N4 ceramics[J]. Journal of the European Ceramic Society, 2020, 40(15): 5316-5323. [3] PARK Y J, PARK M J, KIM J M, et al. Sintered reaction-bonded silicon nitrides with high thermal conductivity: the effect of the starting Si powder and Si3N4 diluents[J]. Journal of the European Ceramic Society, 2014, 34(5): 1105-1113. [4] GOLLA B R, KO J W, KIM J M, et al. Effect of particle size and oxygen content of Si on processing, microstructure and thermal conductivity of sintered reaction bonded Si3N4[J]. Journal of Alloys and Compounds, 2014, 595: 60-66. [5] ZHOU Y, HYUGA H, KUSANO D, et al. Effects of yttria and magnesia on densification and thermal conductivity of sintered reaction-bonded silicon nitrides[J]. Journal of the American Ceramic Society, 2019, 102(4): 1579-1588. [6] ZHU X W, SAKKA Y, ZHOU Y, et al. A strategy for fabricating textured silicon nitride with enhanced thermal conductivity[J]. Journal of the European Ceramic Society, 2014, 34(10): 2585-2589. [7] LU H, BAILEY C, YIN C Y. Design for reliability of power electronics modules[J]. Microelectronics Reliability, 2009, 49(9/10/11): 1250-1255. [8] BUTTAY C, PLANSON D, ALLARD B, et al. State of the art of high temperature power electronics[J]. Materials Science and Engineering: B, 2011, 176(4): 283-288. [9] MURAYAMA N, HIRAO K, SANDO M, et al. High-temperature electro-ceramics and their application to SiC power modules[J]. Ceramics International, 2018, 44(4): 3523-3530. [10] HIROSAKI N, OGATA S, KOCER C, et al. Molecular dynamics calculation of the ideal thermal conductivity of single-crystal α- and β-Si3N4[J]. Physical Review B, 2002, 65(13): 134110. [11] HAYASHI H, HIRAO K, KITAYAMA M, et al. Effect of oxygen content on thermal conductivity of sintered silicon nitride[J]. Journal of the Ceramic Society of Japan, 2001, 109(1276): 1046-1050. [12] ZHOU Y, HYUGA H, KUSANO D, et al. A tough silicon nitride ceramic with high thermal conductivity[J]. Advanced Materials (Deerfield Beach, Fla), 2011, 23(39): 4563-4567. [13] WANG W D, YAO D X, LIANG H Q, et al. Improved thermal conductivity of β-Si3N4 ceramics through the modification of the liquid phase by using GdH2 as a sintering additive[J]. Ceramics International, 2021, 47(4): 5631-5638. [14] WANG W D, YAO D X, LIANG H Q, et al. Enhanced thermal conductivity in Si3N4 ceramics prepared by using ZrH2 as an oxygen getter[J]. Journal of Alloys and Compounds, 2021, 855: 157451. [15] WANG W D, YAO D X, CHEN H B, et al. ZrSi2-MgO as novel additives for high thermal conductivity of β-Si3N4 ceramics[J]. Journal of the American Ceramic Society, 2020, 103(3): 2090-2100. [16] WANG W D, YAO D X, LIANG H Q, et al. Effect of the binary nonoxide additives on the densification behavior and thermal conductivity of Si3N4 ceramics[J]. Journal of the American Ceramic Society, 2020, 103(10): 5891-5899. [17] LUO J, LI J G, LI M J, et al. Low-temperature densification by plasma activated sintering of Mg2Si-added Si3N4[J]. Ceramics International, 2019, 45(12): 15128-15133. [18] LIU W, TONG W X, LU X X, et al. Effects of different types of rare earth oxide additives on the properties of silicon nitride ceramic substrates[J]. Ceramics International, 2019, 45(9): 12436-12442. [19] 杨亮亮,谢志鹏,宋 明.Yb2O3-Al2O3烧结助剂对气压烧结氮化硅陶瓷性能的影响[J].人工晶体学报,2016,45(1):104-109. YANG L L, XIE Z P, SONG M. Effect of Yb2O3-Al2O3 sintering aids on the properties of silicon nitride ceramics prepared by gas pressure sintering[J]. Journal of Synthetic Crystals, 2016, 45(1): 104-109 (in Chinese). [20] DUAN Y S, LIU N, ZHANG J X, et al. Cost effective preparation of Si3N4 ceramics with improved thermal conductivity and mechanical properties[J]. Journal of the European Ceramic Society, 2020, 40(2): 298-304. [21] GUO W M, WU L X, MA T, et al. Rapid fabrication of Si3N4 ceramics by reaction-bonding and pressureless sintering[J]. Journal of the European Ceramic Society, 2016, 36(16): 3919-3924. [22] MENG Q Y, ZHAO Z H, SUN Y Q, et al. Low temperature pressureless sintering of dense silicon nitride using BaO-Al2O3-SiO2 glass as sintering aid[J]. Ceramics International, 2017, 43(13): 10123-10129. [23] 刘 剑,谢志鹏,肖志才,等.烧结助剂对氮化硅陶瓷热导率和力学性能的影响[J].硅酸盐学报,2020,48(12):1865-1871. LIU J, XIE Z P, XIAO Z C, et al. Effect of sintering aids on thermal conductivity and mechanical properties of silicon nitride ceramics[J]. Journal of the Chinese Ceramic Society, 2020, 48(12): 1865-1871 (in Chinese). [24] YE C C, JIANG Y, YUE X Y, et al. Effect of temperature and pre-sintering on phase transformation, texture and mechanical properties of silicon nitride ceramics[J]. Materials Science and Engineering: A, 2018, 731: 140-148. [25] HAMPSHIRE S, POMEROY M J. Grain boundary glasses in silicon nitride: a review of chemistry, properties and crystallisation[J]. Journal of the European Ceramic Society, 2012, 32(9): 1925-1932. [26] BALANDIN A, WANG K L. Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well[J]. Physical Review B, 1998, 58(3): 1544-1549. [27] YANG P, XU F H, LI J B, et al. The impact of oxygen impurity and La doping on thermodynamic properties of Si3N4 ceramic: a first-principle calculation approach[J]. Journal of the European Ceramic Society, 2020, 40(15): 5293-5297. [28] LIAO S J, ZHOU L J, JIANG C X, et al. Thermal conductivity and mechanical properties of Si3N4 ceramics with binary fluoride sintering additives[J]. Journal of the European Ceramic Society, 2021, 41(14): 6971-6982. [29] LI Y S, KIM H N, WU H B, et al. Microstructure and thermal conductivity of gas-pressure-sintered Si3N4 ceramic: the effects of Y2O3 additive content[J]. Journal of the European Ceramic Society, 2021, 41(1): 274-283. [30] 关振铎,张中太,焦金生.无机材料物理性能[M].2版.北京:清华大学出版社,2011. GUAN Z D, ZHANG Z T, JIAO J S. Physical properties of inorganic materials[M]. 2nd ed. Beijing: Tsinghua University Press, 2011 (in Chinese). [31] 段于森,张景贤,李晓光,等.稀土氧化物对常压烧结氮化硅陶瓷性能的影响[J].无机材料学报,2017,32(12):1275-1279. DUAN Y S, ZHANG J X, LI X G, et al. Rare earth oxides on property of pressureless sintered Si3N4 ceramics[J]. Journal of Inorganic Materials, 2017, 32(12): 1275-1279 (in Chinese). [32] 刘维良,刘绍洋,刘硕琦.自增韧Si3N4陶瓷的制备与性能研究[J].中国陶瓷,2011,47(11):12-14. LIU W L, LIU S Y, LIU S Q. Study on the preparation and properties of self-toughened Si3N4 ceramics[J]. China Ceramics, 2011, 47(11): 12-14 (in Chinese). [33] 魏 赛,PORZ L W,谢志鹏,等.环境温度及晶界相断裂韧性对氮化硅陶瓷桥接行为的影响[J].稀有金属材料与工程,2015,44(s1):710-713. WEI S, PORZ L W, XIE Z P, et al. Crack bridging in silicon nitride ceramics at various temperatures and grain boundary toughness[J]. Rare Metal Materials and Engineering, 2015, 44(s1): 710-713 (in Chinese). [34] 王旭东,白 彬.氮化硅陶瓷晶界相研究进展[J].材料导报,2016,30(s2):121-126. WANG X D, BAI B. Research progress on grain boundary phase of silicon nitride ceramics[J]. Materials Review, 2016, 30(s2): 121-126 (in Chinese). [35] LIU W, TONG W X, HE R X, et al. Effect of the Y2O3 additive concentration on the properties of a silicon nitride ceramic substrate[J]. Ceramics International, 2016, 42(16): 18641-18647. [36] KITAYAMA M, HIRAO K, TORIYAMA M, et al. Thermal conductivity of β-Si3N4: I, effects of various microstructural factors[J]. Journal of the American Ceramic Society, 2004, 82(11): 3105-3112. [37] YOKOTA H, ABE H, IBUKIYAMA M. Effect of lattice defects on the thermal conductivity of β-Si3N4[J]. Journal of the European Ceramic Society, 2003, 23(10): 1751-1759. [38] WANG X L, XIE F W, ZHANG L Q, et al. Effect of vacancy defects on the thermal conductivity of graphene nanoribbons: a molecular dynamics study[J]. International Journal of Materials and Structural Integrity, 2012, 6(1): 26. [39] WANG T, MADSEN G H, HARTMAIER A. Atomistic study of the influence of lattice defects on the thermal conductivity of silicon[J]. Modelling and Simulation in Materials Science and Engineering, 2014, 22(3): 035011. [40] HU F, ZHU T B, XIE Z P, et al. Elimination of grain boundaries and its effect on the properties of silicon nitride ceramics[J]. Ceramics International, 2020, 46(8): 12606-12612. [41] KIM J M, KO S I, KIM H N, et al. Effects of microstructure and intergranular glassy phases on thermal conductivity of silicon nitride[J]. Ceramics International, 2017, 43(7): 5441-5449. |