[1] 杨志强.现代煤气化技术发展趋势及应用综述[J].化工管理,2017(2):165. YANG Z Q. Modern coal gasification technology development trend and utilization review[J]. Chemical Enterprise Management, 2017(2): 165 (in Chinese). [2] 沙兴中,杨南星.煤的气化与应用[M].上海:华东理工大学出版社,1995:14-17. SHA X Z, YANG N X. Coal gasification and application[M]. Shanghai: East China University of Science and Technology Press, 1995: 14-17 (in Chinese). [3] 许慎启.煤气化反应动力学及渣中残碳反应活性研究[D].上海:华东理工大学,2011:1-7. XU S Q. Gasification kinetics study of coal char and unburned carbon in slag[D]. Shanghai: East China University of Science and Technology, 2011: 1-7 (in Chinese). [4] 赵永彬,吴 辉,蔡晓亮,等.煤气化残渣的基本特性研究[J].洁净煤技术,2015,21(3):110-113+74. ZHAO Y B, WU H, CAI X L, et al. Basic characteristics of coal gasification residual[J]. Clean Coal Technology, 2015, 21(3): 110-113+74 (in Chinese). [5] 高旭霞,郭晓镭,龚 欣.气流床煤气化渣的特征[J].华东理工大学学报(自然科学版),2009,35(5):677-683. GAO X X, GUO X L, GONG X. Characterization of slag from entrained-flow coal gasificaion[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2009, 35(5): 677-683 (in Chinese). [6] 曲江山,张建波,孙志刚,等.煤气化渣综合利用研究进展[J].洁净煤技术,2020,26(1):184-193. QU J S, ZHANG J B, SUN Z G, et al. Research progress on comprehensive utilization of coal gasification slag[J]. Clean Coal Technology, 2020, 26(1): 184-193 (in Chinese). [7] DAVIDOVITS J. Geopolymers: ignorganic polymeric new materials[J]. Therm Anal, 1991, 37(8):1633-1656. [8] JINDAL B B. Investigations on the properties of geopolymer mortar and concrete with mineral admixtures: a review[J]. Construction and Building Materials, 2019, 227: 116644. [9] 王 恩,倪 文,孙 汉.工业固体废弃物制备地质聚合物技术的原理与发展[J].矿产综合利用,2005(2):30-34. WANG E, NI W, SUN H. The principle and development of the technique for preparing industrial slags-based geopolymer[J]. Multipurpose Utilization of Mineral Resources, 2005(2): 30-34 (in Chinese). [10] 夏琳玲,吴大志,陈柯宇.粉煤灰基地质聚合物的性能研究及机理分析[J].水利规划与设计,2021(4):79-82+132+137. XIA L L, WU D Z, CHEN K Y. Study on properties and mechanism of fly ash based geopolymer[J]. Water Resources Planning and Design, 2021(4): 79-82+132+137 (in Chinese). [11] LEONG H Y, ONG D E L, SANJAYAN J G, et al. Suitability of Sarawak and Gladstone fly ash to produce geopolymers: a physical, chemical, mechanical, mineralogical and microstructural analysis[J]. Ceramics International, 2016, 42(8): 9613-9620. [12] 刘 泽,周 瑜,孔凡龙,等.碱激发矿渣基地质聚合物微观结构与性能研究[J].硅酸盐通报,2017,36(6):1830-1834. LIU Z, ZHOU Y, KONG F L, et al. Microstructure and properties of alkali-activated blast furnace slag based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(6): 1830-1834 (in Chinese). [13] 王 菲,刘 泽,韩 乐,等.活化煤矸石地质聚合物的制备与性能研究[J].硅酸盐通报,2021,40(3):914-920. WANG F, LIU Z, HAN L, et al. Preparation and properties of activated coal gangue geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(3): 914-920 (in Chinese). [14] LIU Z, WANG J X, JIANG Q K, et al. A green route to sustainable alkali-activated materials by heat and chemical activation of lithium slag[J]. Journal of Cleaner Production, 2019, 225: 1184-1193.[15] PACHECO-TORGAL F, JALALI S. Nanotechnology: advantages and drawbacks in the field of construction and building materials[J]. Construction and Building Materials, 2011, 25(2): 582-590. [16] DUAN P, YAN C J, LUO W J, et al. Effects of adding nano-TiO2 on compressive strength, drying shrinkage, carbonation and microstructure of fluidized bed fly ash based geopolymer paste[J]. Construction and Building Materials, 2016, 106: 115-125. [17] TIMAKUL P, RATTANAPRASIT W, AUNGKAVATTANA P. Enhancement of compressive strength and thermal shock resistance of fly ash-based geopolymer composites[J]. Construction and Building Materials, 2016, 121: 653-658. [18] YANG L Y, JIA Z J, ZHANG Y M, et al. Effects of nano-TiO2 on strength, shrinkage and microstructure of alkali activated slag pastes[J]. Cement and Concrete Composites, 2015, 57: 1-7. [19] 茅 艳,段敬民,王智敏.煤矸石建筑材料性能特性的分析[J].煤炭工程,2004,36(7):61-63. MAO Y, DUAN J M, WANG Z M. Analysis of refuse’s characteristic when using it to produce construction material[J]. Coal Engineering, 2004, 36(7): 61-63 (in Chinese). [20] FANG Y H, LU Z L, WANG Z L. FT-IR study on early-age hydration of alkali-activated slag cement[J]. Key Engineering Materials, 2011, 492: 429-432. |