[1] WARDHONO A, GUNASEKARA C, LAW D W, et al. Comparison of long term performance between alkali activated slag and fly ash geopolymer concretes[J]. Construction and Building Materials, 2017, 143: 272-279. [2] LAW D W, ADAM A A, MOLYNEAUX T K, et al. Durability assessment of alkali activated slag (AAS) concrete[J]. Materials and Structures, 2012, 45(9): 1425-1437. [3] ZHANG J, SHI C J, ZHANG Z H, et al. Durability of alkali-activated materials in aggressive environments: a review on recent studies[J]. Construction and Building Materials, 2017, 152: 598-613. [4] SAXENA S K, KUMAR M, SINGH N B. Fire resistant properties of alumino silicate geopolymer cement mortars[J]. Materials Today: Proceedings, 2017, 4(4): 5605-5612. [5] MYERS R J, BERNAL S A, PROVIS J L. Phase diagrams for alkali-activated slag binders[J]. Cement and Concrete Research, 2017, 95: 30-38. [6] MOBILI A, BELLI A, GIOSUÈ C, et al. Metakaolin and fly ash alkali-activated mortars compared with cementitious mortars at the same strength class[J]. Cement and Concrete Research, 2016, 88: 198-210. [7] 申艳军,白志鹏,郝建帅,等.尾矿制备混凝土研究进展与利用现状分析[J].硅酸盐通报,2021,40(3):845-857+876. SHEN Y J, BAI Z P, HAO J S, et al. Research progress and utilization status analysis of concrete prepared by tailings[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(3): 845-857+876 (in Chinese). [8] YI C, MA H Q, ZHU H G, et al. Study on chloride binding capability of coal gangue based cementitious materials[J]. Construction and Building Materials, 2018, 167: 649-656. [9] 刘 潮,水中和,高 旭,等.碱激发煤矸石-高炉矿渣复合材料性能评价[J].硅酸盐通报,2020,39(9):2877-2884. LIU C, SHUI Z H, GAO X, et al. Performance evaluation of alkali-activated coal gangue-blast furnace slag composite[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(9): 2877-2884 (in Chinese). [10] YANG L Y, JIA Z J, ZHANG Y M, et al. Effects of nano-TiO2 on strength, shrinkage and microstructure of alkali activated slag pastes[J]. Cement and Concrete Composites, 2015, 57: 1-7. [11] MO L W, DENG M, TANG M S. Effects of calcination condition on expansion property of MgO-type expansive agent used in cement-based materials[J]. Cement and Concrete Research, 2010, 40(3): 437-446. [12] GONG J Q, ZENG W, ZHANG W J. Influence of shrinkage-reducing agent and polypropylene fiber on shrinkage of ceramsite concrete[J]. Construction and Building Materials, 2018, 159: 155-163. [13] MECHTCHERINE V, SECRIERU E, SCHRÖFL C. Effect of superabsorbent polymers (SAPs) on rheological properties of fresh cement-based mortars: development of yield stress and plastic viscosity over time[J]. Cement and Concrete Research, 2015, 67: 52-65. [14] RIBEIRO A B, GONÇALVES A, CARRAJOLA A. Effect of shrinkage reduction admixtures on the pore structure properties of mortars[J]. Materials and Structures, 2006, 39(2): 179-187. [15] PALACIOS M, PUERTAS F. Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes[J]. Cement and Concrete Research, 2007, 37(5): 691-702. [16] BÍLEK V, KALINA L, NOVOTNY R, et al. Some issues of shrinkage-reducing admixtures application in alkali-activated slag systems[J]. Materials, 2016, 9(6): 462. [17] YE H L, RADLIŃSKA A. Shrinkage mechanisms of alkali-activated slag[J]. Cement and Concrete Research, 2016, 88: 126-135. [18] NEDELJKOVIĆ M, AVIJA B, ZUO Y B, et al. Effect of natural carbonation on the pore structure and elastic modulus of the alkali-activated fly ash and slag pastes[J]. Construction and Building Materials, 2018, 161: 687-704. [19] 马宏强,易 成,陈宏宇,等.碱激发煤矸石-矿渣胶凝材料的性能和胶结机理[J].材料研究学报,2018,32(12):898-904. MA H Q, YI C, CHEN H Y, et al. Property and cementation mechanism of alkali-activated coal gangue-slag cementitious materials[J]. Chinese Journal of Materials Research, 2018, 32(12): 898-904 (in Chinese). [20] CONSTANTINIDES G, ULM F J. The nanogranular nature of C-S-H[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(1): 64-90. [21] NĔMEČEK J, MILAUER V, KOPECKY L. Nanoindentation characteristics of alkali-activated aluminosilicate materials[J]. Cement and Concrete Composites, 2011, 33(2): 163-170. |