[1] JANUCHTA K, STEPNIEWSKA M, JENSEN L R, et al. Breaking the limit of micro-ductility in oxide glasses[J]. Advanced Science, 2019, 6(18): 1901281. [2] ROSALES-SOSA G A, MASUNO A, HIGO Y, et al. Crack-resistant Al2O3-SiO2 glasses[J]. Scientific Reports, 2016, 6: 23620. [3] 丰 盛,单志涛,潘瑞琨,等.基于气动悬浮激光加热技术YAG熔体高温热物理性能评测[J].无机材料学报,2018,33(12):1297-1302. FENG S, SHAN Z T, PAN R K, et al. Thermo-physical property of YAG melt measured by aerodynamic levitation technique[J]. Journal of Inorganic Materials, 2018, 33(12): 1297-1302 (in Chinese). [4] MEA G D, GASPAROTTO A, BETTINELLI M, et al. Chemical durability of zinc-containing glasses[J]. Journal of Non-Crystalline Solids, 1986, 84(1/2/3): 443-451. [5] WEIGEL C, LE LOSQ C, VIALLA R, et al. Elastic moduli of XAlSiO4 aluminosilicate glasses: effects of charge-balancing cations[J]. Journal of Non-Crystalline Solids, 2016, 447: 267-272. [6] CORMIER L, DELBES L, BAPTISTE B, et al. Vitrification, crystallization behavior and structure of zinc aluminosilicate glasses[J]. Journal of Non-Crystalline Solids, 2021, 555: 120609. [7] SHEVCHENKO M, JAK E. Integrated experimental phase equilibria study and thermodynamic modelling of the binary ZnO-Al2O3, ZnO-SiO2, Al2O3-SiO2 and ternary ZnO-Al2O3-SiO2 systems[J]. Ceramics International, 2021, 47(15): 20974-20991. [8] JANUCHTA K, YOUNGMAN R E, GOEL A, et al. Discovery of ultra-crack-resistant oxide glasses with adaptive networks[J]. Chemistry of Materials, 2017, 29(14): 5865-5876. [9] 张联盟,黄学辉,宋晓岚.材料科学基础[M].2版.武汉:武汉理工大学出版社,2008. ZHANG L M, HUANG X H, SONG X L. Fundamentals of materials science[M]. 2nd ed. Wuhan: Wuhan University of Technology Press, 2008 (in Chinese). [10] TO T, JENSEN L R, SMEDSKJAER M M. On the relation between fracture toughness and crack resistance in oxide glasses[J]. Journal of Non-Crystalline Solids, 2020, 534: 119946. [11] 李子煌,高运周,范仕刚,等.超低膨胀微晶玻璃中飞秒激光直写波导探索[J].硅酸盐通报,2021,40(11):3784-3790. LI Z H, GAO Y Z, FAN S G, et al. Femtosecond laser direct written waveguides in ultra-low expansion glass-ceramics[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(11): 3784-3790 (in Chinese). [12] KE X F, SHAN Z T, LI Z H, et al. Toward hard and highly crack resistant magnesium aluminosilicate glasses and transparent glass-ceramics[J]. Journal of the American Ceramic Society, 2020, 103(6): 3600-3609. [13] 丁志松,王兵兵,王振涛,等.铝硅准二元玻璃硬度和抗碎裂性演化的结构起源[J].硅酸盐学报,2022,50(4):894-901. DING Z S, WANG B B, WANG Z T, et al. Structural origin of hardness and crack resistance in aluminosilicate glass[J]. Journal of the Chinese Ceramic Society, 2022, 50(4): 894-901 (in Chinese). [14] 王振涛,顾少轩,丁志松,等.碱土替换铝硅酸盐玻璃硬度和玻璃转变温度反向演化的结构起源[J].硅酸盐学报,2022,50(4):879-885. WANG Z T, GU S X, DING Z S, et al. Atomic-scale structural origin of reverse relationship between hardness and glass transition temperature of peraluminous aluminosilicate glasses with alkaline earth ions[J]. Journal of the Chinese Ceramic Society, 2022, 50(4): 879-885 (in Chinese). [15] GROSS T M, WU J, BAKER D E, et al. Crack-resistant glass with high shear band density[J]. Journal of Non-Crystalline Solids, 2018, 494: 13-20. [16] CALAS G, GALOISY L, CORMIER L, et al. The structural properties of cations in nuclear glasses[J]. Procedia Materials Science, 2014, 7: 23-31. [17] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5): 751-767. [18] FRANKBERG E J, KALIKKA J, GARCÍA FERRÉ F, et al. Highly ductile amorphous oxide at room temperature and high strain rate[J]. Science, 2019, 366(6467): 864-869. [19] LEE S K, LEE S B, PARK S Y, et al. Structure of amorphous aluminum oxide[J]. Physical Review Letters, 2009, 103(9): 095501. [20] 王 琰,高运周,陶海征,等.铝酸钙准二元玻璃硬度和抗碎裂性组成依赖的结构起源探究[J].硅酸盐通报,2021,40(10):3504-3510. WANG Y, GAO Y Z, TAO H Z, et al. Structural origin revealing of dependence of hardness and crack resistance on composition in CaO-Al2O3 pseudo-binary glass system[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(10): 3504-3510 (in Chinese). [21] CUI K K, ZHANG Y Y, FU T, et al. Toughening mechanism of mullite matrix composites: a review[J]. Coatings, 2020, 10(7): 672. [22] MOESGAARD M, KEDING R, SKIBSTED J, et al. Evidence of intermediate-range order heterogeneity in calcium aluminosilicate glasses[J]. Chemistry of Materials, 2010, 22(15): 4471-4483. [23] SCHNEIDER H, FISCHER R X, SCHREUER J. Mullite: crystal structure and related properties[J]. Journal of the American Ceramic Society, 2015, 98(10): 2948-2967. [24] TKALCEC E, KURAJICA S, IVANKOVIC H. Crystallization behavior and microstructure of powdered and bulk ZnO-Al2O3-SiO2 glass-ceramics[J]. Journal of Non-Crystalline Solids, 2005, 351(2): 149-157. [25] ANGELI F, DELAYE J M, CHARPENTIER T, et al. Investigation of Al-O-Si bond angle in glass by 27Al 3Q-MAS NMR and molecular dynamics[J]. Chemical Physics Letters, 2000, 320(5/6): 681-687. [26] LIAO K, HARUTA M, MASUNO A, et al. Real-space mapping of oxygen coordination in phase-separated aluminosilicate glass: implication for glass stability[J]. ACS Applied Nano Materials, 2020, 3(6): 5053-5060. [27] SPIERINGS G A C M, DIJK J. The dissolution of Na2O-MgO-CaO-SiO2 glass in aqueous HF solutions[J]. Journal of Materials Science, 1987, 22(5): 1869-1874. |