[1] 张作义,吴宗鑫,王大中,等.我国高温气冷堆发展战略研究[J].中国工程科学,2019,21(1):12-19. ZHANG Z Y, WU Z X, WANG D Z, et al. Development strategy of high temperature gas cooled reactor in China[J]. Engineering Science, 2019, 21(1): 12-19 (in Chinese). [2] 周 缘,王广金,周 天,等.基于三代核电技术的电气贯穿件导体组件研制[J].核动力工程,2019,40(4):153-156. ZHOU Y, WANG G J, ZHOU T, et al. Development of feedthrough assembly for electrical penetration assembly based on third-generation nuclear power technology[J]. Nuclear Power Engineering, 2019, 40(4): 153-156 (in Chinese). [3] 刘 晓,钱达志,王明珊,等.研究堆低压电气贯穿件的密封性能[J].原子能科学技术,2011,45(1):80-83. LIU X, QIAN D Z, WANG M S, et al. Leak tightness of low voltage electrical penetration assembly on research reactor[J]. Atomic Energy Science and Technology, 2011, 45(1): 80-83 (in Chinese). [4] 陈 鑫.EPR核电站核岛电气贯穿件介绍及安装[J].机电信息,2016(18):63-64. CHEN X. Introduction and installation of nuclear island electrical penetrator in EPR nuclear power plant[J]. Mechanical and Electrical Information, 2016(18): 63-64 (in Chinese). [5] 李明泽,闫 贺,刁兴中,等.基于光纤传感的玻璃封接预应力测量[J].清华大学学报(自然科学版),2018,58(7):664-670. LI M Z, YAN H, DIAO X Z, et al. Prestress measurement during glass-metal sealing based on a fiber sensor[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(7): 664-670 (in Chinese). [6] 高立本,沈 健.高温气冷堆的发展与前景[J].中国核工业,2016(10):24-26+55. GAO L B, SHEN J. The development and perspective of HTGR[J]. China Nuclear Industry, 2016(10): 24-26+55 (in Chinese). [7] 张 平,徐景明,石 磊,等.中国高温气冷堆制氢发展战略研究[J].中国工程科学,2019,21(1):20-28. ZHANG P, XU J M, SHI L, et al. Nuclear hydrogen production based on high temperature gas cooled reactor in China[J]. Engineering Science, 2019, 21(1): 20-28 (in Chinese). [8] 张 浩,王建建.模块式高温气冷堆的技术背景及展望[J].中国核电,2021,14(3):419-422. ZHANG H, WANG J J. The technical base and development prospects of the modular high temperature gas cooled reactor[J]. China Nuclear Power, 2021, 14(3): 419-422 (in Chinese). [9] FRED R.玻璃与金属的封接[J].真空电子技术,1966(s3):30-37. FRED R. Sealing of glass to metal[J]. Vacuum Electronics, 1966(s3): 30-37 (in Chinese). [10] 马英仁.封接玻璃(一):对玻璃的要求及适于封接的金属[J].玻璃与搪瓷,1992,20(4):58-65. MA Y R. Sealing glass (I): requirements for glass and metals suitable for sealing[J]. Glass & Enamel, 1992, 20(4): 58-65 (in Chinese). [11] 张 斌,鲍学斌,薛永阳,等.高温气冷堆控制棒圆环链剪切装置设计与分析[J].机械设计与制造,2022(10):273-277. ZHANG B, BAO X B, XUE Y Y, et al. Design and analysis of shear device for the ring chain of the control rod in high temperature gas-cooled reactors[J]. Machinery Design & Manufacture, 2022(10): 273-277 (in Chinese). [12] 桑绍柏.固体氧化物燃料电池密封材料设计与性能优化[D].武汉:华中科技大学,2008. SANG S B. Design and performance optimization of seals for solid oxide fuel cells[D]. Wuhan: Huazhong University of Science and Technology, 2008 (in Chinese). [13] 俞高伟,胡子婴,吴珂科,等.AP1000中压电气贯穿件合格鉴定电气试验要求[J].发电设备,2013,27(2):142-144. YU G W, HU Z Y, WU K K, et al. Requirements on qualification test of AP1000 medium-voltage electrical penetration assemblies[J]. Power Equipment, 2013, 27(2): 142-144 (in Chinese). [14] 郑开云,杨 晓,陈 智.基于IEEE标准的电气贯穿件鉴定试验研究[J].核安全,2016,15(2):70-76+83. ZHENG K Y, YANG X, CHEN Z. Study on the qualification test of electric penetration assembly based on IEEE standard[J]. Nuclear Safety, 2016, 15(2): 70-76+83 (in Chinese). [15] 刘 星,陈长军,王晓南,等.玻璃与金属封接研究进展[J].焊接技术,2014,43(5):1-6. LIU X, CHEN C J, WANG X N, et al. Research progress of glass-to-metal sealing[J]. Welding Technology, 2014, 43(5): 1-6 (in Chinese). [16] GUO H W, DANG M Y, LIU L, et al. Alkali Barium glasses for hermetic compression seals: compositional effect, processing, and sealing performance[J]. Ceramics International, 2019, 45(17): 22589-22595. [17] 沈子钦.金属氧化物对封接微晶玻璃析晶性能影响的研究[D].北京:清华大学,2017. SHEN Z Q. Study on the effect of metal oxides on the crystallization properties of sealed glass-ceramics[D]. Beijing: Tsinghua University, 2017 (in Chinese). [18] 范智淳.电气贯穿件封接玻璃压缩应变检测实验研究[D].北京:清华大学,2020. FAN Z C. Experimental study on compressive strain detection of glass sealed with electrical penetration assembly[D]. Beijing: Tsinghua University, 2020 (in Chinese). [19] SCHERER G W. Reaction in glass and composites[M]. Wiley, 1986. [20] 马英仁.封接玻璃(四):封接玻璃中的应力[J].玻璃与搪瓷,1993,21(1):58-62. MA Y R. Sealing glass (IV): stress in sealing glass[J]. Glass & Enamel, 1993, 21(1): 58-62 (in Chinese). [21] 王建丰,杨 超,柳宇柯,等.纳米压痕技术在页岩力学性质表征中的应用进展[J].石油与天然气地质,2022,43(2):477-488. WANG J F, YANG C, LIU Y K, et al. Review on the application of nanoindentation to study of shale mechanical property[J]. Oil & Gas Geology, 2022, 43(2): 477-488 (in Chinese). [22] FAN Z C, DIAO X Z, ZHANG Y, et al. Analysis of residual stress in electrical penetration assembly based on a fiber Bragg grating sensor[J]. Sensors (Basel, Switzerland), 2018, 19(1): 18. [23] WUNDER S L, SCHOEN P E. Pressure measurement at high temperatures in the diamond anvil cell[J]. Journal of Applied Physics, 1981, 52(6): 3772-3775. [24] MARSHALL D B, LAWN B R. An indentation technique for measuring stresses in tempered glass surfaces[J]. Journal of the American Ceramic Society, 1977, 60(1/2): 86-87. [25] ANSTIS G R, CHANTIKUL P, LAWN B R, et al. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements[J]. Journal of the American Ceramic Society, 1981, 64(9): 533-538. [26] RAJU I S, NEWMAN J C Jr. Stress-intensity factors for a wide range of semi-elliptical surface cracks in finite-thickness plates[J]. Engineering Fracture Mechanics, 1979, 11(4): 817-829. [27] SNEDDON I N. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile[J]. International Journal of Engineering Science, 1965, 3(1): 47-57. [28] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583. [29] OLIVER W C, PHARR G M. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004, 19(1): 3-20. [30] MA D J, ONG C W. Further analysis of energy-based indentation relationship among Young's modulus, nominal hardness, and indentation work[J]. Journal of Materials Research, 2010, 25(6): 1131-1136. [31] SOARES P C Jr, LEPIENSKI C M. Residual stress determination on lithium disilicate glass-ceramic by nanoindentation[J]. Journal of Non-Crystalline Solids, 2004, 348: 139-143. [32] PEITL O, SERBENA F C, MASTELARO V R, et al. Internal residual stress measurements in a bioactive glass-ceramic using vickers indentation[J]. Journal of the American Ceramic Society, 2010, 93(8): 2359-2368. [33] XIAO H X, WANG X M, LONG C S. Theoretical model for determining elastic modulus of ceramic materials by nanoindentation[J]. Materialia, 2021, 17: 101121. [34] 黄建辉,赵 洋.光纤布拉格光栅传感器实现应力测量的最新进展[J].光电子·激光,2000,11(2):216-220. HUANG J H, ZHAO Y. Progress in strain measurement with fiber Bragg grating sensor[J]. Journal of Optoelectronicslaser, 2000, 11(2): 216-220 (in Chinese). [35] 胡康佳.硼硅酸玻璃与奥氏体不锈钢封接组织与性能的研究[D].北京:清华大学,2020. HU K J. Study on microstructure and properties of seal between borosilicate glass and austenitic stainless steel[D]. Beijing: Tsinghua University, 2020 (in Chinese). [36] RITO R L, CROCOMBE A D, OGIN S L. Health monitoring of composite patch repairs using CFBG sensors: experimental study and numerical modelling[J]. Composites Part A: Applied Science and Manufacturing, 2017, 100: 255-268. [37] KAKEI A, EPAARACHCHI J A, ISLAM M, et al. Evaluation of delamination crack tip in woven fibre glass reinforced polymer composite using FBG sensor spectra and thermo-elastic response[J]. Measurement, 2018, 122: 178-185. [38] NING X G, MURAYAMA H, KAGEYAMA K, et al. Dynamic strain distribution measurement and crack detection of an adhesive-bonded single-lap joint under cyclic loading using embedded FBG[J]. Smart Materials and Structures, 2014, 23(10): 105011. [39] OKABE Y, TSUJI R, TAKEDA N. Application of chirped fiber Bragg grating sensors for identification of crack locations in composites[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(1): 59-65. [40] OLIVEIRA R A, NEVES P T Jr, PEREIRA J T, et al. Numerical approach for designing a Bragg grating acousto-optic modulator using the finite element and the transfer matrix methods[J]. Optics Communications, 2008, 281(19): 4899-4905. [41] KIM S W. Characteristics of strain transfer and the reflected spectrum of a metal-coated fiber Bragg grating sensor[J]. Optics and Lasers in Engineering, 2017, 96: 83-93. [42] HU K J, YAN H, FAN Z C, et al. In situ characterization of residual stress in glass-to-metal seal[J]. Ceramics International, 2019, 45(16): 20983-20987. [43] FAN Z, HU K, HUANG Z, et al. Optimized sealing process and real-time monitoring of glass-to-metal seal structures[J]. Journal of Visualized Experiments, 2019(151). [44] COOK R F, MICHAELS C A. Review: coefficients for stress, temperature, and composition effects in fluorescence measurements of alumina[J]. Journal of Research of the National Institute of Standards and Technology, 2017, 122: 1-26. [45] JANNOTTI P, SUBHASH G, ZHENG J, et al. Measurement of microscale residual stresses in multi-phase ceramic composites using Raman spectroscopy[J]. Acta Materialia, 2017, 129: 482-491. [46] MUNRO R G, PIERMARINI G J, BLOCK S, et al. Model line-shape analysis for the ruby R lines used for pressure measurement[J]. Journal of Applied Physics, 1985, 57(2): 165-169. [47] XU J A, MAO H K, BELL P M. High-pressure ruby and diamond fluorescence: observations at 0.21 to 0.55 terapascal[J]. Science, 1986, 232(4756): 1404-1406. [48] GRABNER L. Spectroscopic technique for the measurement of residual stress in sintered Al2O3[J]. Journal of Applied Physics, 1978, 49(2): 580-583. [49] LI S H, ZHU Q Y, HU K J, et al. Determination of compressive stress in glass-to-metal seals using photoluminescence spectroscopy technique[J]. Ceramics International, 2022, 48(9): 13379-13385. [50] MICHAELS C A, COOK R F. Determination of residual stress distributions in polycrystalline alumina using fluorescence microscopy[J]. Materials & Design, 2016, 107: 478-490. [51] ESTEVES R, HERNANDEZ J, VO K, et al. Measurements for stress sensing of composites using tailored piezospectroscopic coatings[J]. AIP Advances, 2019, 9(5): 055201. [52] HOU W X, ZHAO S S, WANG T, et al. Manipulation of microwave magnetism in flexible La0.7Sr0.3MnO3 film by deformable ionic gel gating[J]. Applied Surface Science, 2021, 563: 150074. [53] POTAPOV A, SONG Y, MEADE T J, et al. Distance measurements in model bis-Gd(III) complexes with flexible “bridge”. Emulation of biological molecules having flexible structure with Gd(III) labels attached[J]. Journal of Magnetic Resonance, 2010, 205(1): 38-49. [54] REICHARD K M, LINDNER D K, CLAUS R O. Vibration sensing in flexible structures using a distributed-effect modal domain optical fiber sensor[C]//Orlando '91. Proc SPIE 1489, Structures Sensing and Control, Orlando, FL, USA. 1991, 1489: 218-229. [55] VARSHNEYA A K, PETTI R J. Finite element analysis of stresses in glass-to-metal foil seals[J]. Journal of the American Ceramic Society, 1978, 61(11/12): 498-503. [56] SOULES T F, BUSBEY R F, REKHSON S M, et al. Finite-element calculation of stresses in glass parts undergoing viscous relaxation[J]. Journal of the American Ceramic Society, 1987, 70(2): 90-95. [57] CHAMBERS R S, TANDON R, STAVIG M E. Characterization and calibration of a viscoelastic simplified potential energy clock model for inorganic glasses[J]. Journal of Non-Crystalline Solids, 2016, 432: 545-555. [58] LEI D Q, FU X Q, REN Y C, et al. Temperature and thermal stress analysis of parabolic trough receivers[J]. Renewable Energy, 2019, 136: 403-413. [59] 徐佳济.玻璃封接电连接器残余应力仿真分析和实验验证[D].杭州:浙江工业大学,2019. XU J J. The analysis of residual stress in glass-to-metal seals for triax connector[D]. Hangzhou: Zhejiang University of Technology, 2019 (in Chinese). [60] 谭明明,凌 祥.玻璃与金属真空钎焊接头残余应力影响参数分析[J].焊接学报,2012,33(2):21-24+114. TAN M M, LING X. Analysis of influence parameters on residual stress in glass-to-metal vacuum brazing flat joint[J]. Transactions of the China Welding Institution, 2012, 33(2): 21-24+114 (in Chinese). [61] DAI S, ELISBERG B, CALDERONE J, et al. Sealing glass-ceramics with near-linear thermal strain, part III: stress modeling of strain and strain rate matched glass-ceramic to metal seals[J]. Journal of the American Ceramic Society, 2017, 100(8): 3652-3661. |