[1] HATHERINGTON G. Water in vitreous silica Part 1. Influence of water content on the properties of vitreous silica[J]. Physics & Chemistry of Glasses, 1962(3-4): 129-133. [2] PIERCE E M, FRUGIER P, CRISCENTI L J, et al. Modeling interfacial glass-water reactions: recent advances and current limitations[J]. International Journal of Applied Glass Science, 2014, 5(4): 421-435. [3] REBISCOUL D, FRUGIER P, GIN S, et al. Protective properties and dissolution ability of the gel formed during nuclear glass alteration[J]. Journal of Nuclear Materials, 2005, 342(1/2/3): 26-34. [4] REBISCOUL D, VAN DER LEE A, RIEUTORD F, et al. Morphological evolution of alteration layers formed during nuclear glass alteration: new evidence of a gel as a diffusive barrier[J]. Journal of Nuclear Materials, 2004, 326(1): 9-18. [5] GIN S, JOLLIVET P, FOURNIER M, et al. Origin and consequences of silicate glass passivation by surface layers[J]. Nature Communications, 2015, 6: 6360. [6] DAVIS K M, TOMOZAWA M. Water diffusion into silica glass: structural changes in silica glass and their effect on water solubility and diffusivity[J]. Journal of Non-Crystalline Solids, 1995, 185(3): 203-220. [7] KURODA M, TACHIBANA S, SAKAMOTO N, et al. Water diffusion in silica glass through pathways formed by hydroxyls[J]. American Mineralogist, 2018, 103(3): 412-417. [8] AMMA S I, KIM S H, PANTANO C G. Analysis of water and hydroxyl species in soda lime glass surfaces using attenuated total reflection (ATR)-IR spectroscopy[J]. Journal of the American Ceramic Society, 2016, 99(1): 128-134. [9] GEISLER T, DOHMEN L, LENTING C, et al. Real-time in situ observations of reaction and transport phenomena during silicate glass corrosion by fluid-cell Raman spectroscopy[J]. Nature Materials, 2019, 18(4): 342-348. [10] GIN S, MIR A H, JAN A, et al. A general mechanism for gel layer formation on borosilicate glass under aqueous corrosion[J]. The Journal of Physical Chemistry C, 2020, 124(9): 5132-5144. [11] AMMA S I, LUO J W, KIM S H, et al. Effect of glass composition on the hardness of surface layers on aluminosilicate glasses formed through reaction with strong acid[J]. Journal of the American Ceramic Society, 2018, 101(2): 657-665. [12] GIN S. Open scientific questions about nuclear glass corrosion[J]. Procedia Materials Science, 2014, 7: 163-171. [13] GIN S, BEAUDOUX X, ANGÉLI F, et al. Effect of composition on the short-term and long-term dissolution rates of ten borosilicate glasses of increasing complexity from 3 to 30 oxides[J]. Journal of Non-Crystalline Solids, 2012, 358(18/19): 2559-2570. [14] LIU H S, HAHN S H, REN M G, et al. Searching for correlations between vibrational spectral features and structural parameters of silicate glass network[J]. Journal of the American Ceramic Society, 2020, 103(6): 3575-3589. [15] LIU H S, NGO D, REN M G, et al. Effects of surface initial condition on aqueous corrosion of glass: a study with a model nuclear waste glass[J]. Journal of the American Ceramic Society, 2019, 102(4): 1652-1664. [16] NGO D, LIU H, CHEN Z, et al. O and SiOH on a boroaluminosilicate glass corroded in aqueous solution[J]. npj Materials Degradation, 2020, 4: 1-14. [17] DU J C, RIMSZA J M. Atomistic computer simulations of water interactions and dissolution of inorganic glasses[J]. Npj Materials Degradation, 2017, 1: 16. [18] MAHADEVAN T S, SUN W, DU J C. Development of water reactive potentials for sodium silicate glasses[J]. The Journal of Physical Chemistry B, 2019, 123(20): 4452-4461. [19] RIMSZA J M, DU J C. Interfacial structure and evolution of the water-silica gel system by reactive force-field-based molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2017, 121(21): 11534-11543. [20] BENNETT P, MELCER M E, SIEGEL D, et al. The dissolution of quartz in dilute aqueous solutions of organic acids at 25 ℃[J]. Geochimica et Cosmochimica Acta, 1988, 52: 1521-1530. [21] RIMSTIDT J D. Rate equations for sodium catalyzed quartz dissolution[J]. Geochimica et Cosmochimica Acta, 2015, 167: 195-204. [22] CRUNDWELL F K. On the mechanism of the dissolution of quartz and silica in aqueous solutions[J]. ACS Omega, 2017, 2(3): 1116-1127. [23] DAVIS K M, TOMOZAWA M. An infrared spectroscopic study of water-related species in silica glasses[J]. Journal of Non-Crystalline Solids, 1996, 201(3): 177-198. [24] MAHADEVAN T S, GAROFALINI S H. Dissociative chemisorption of water onto silica surfaces and formation of hydronium ions[J]. The Journal of Physical Chemistry C, 2008, 112(5): 1507-1515. [25] STERPENICH J, LIBOUREL G. Water diffusion in silicate glasses under natural weathering conditions: evidence from buried medieval stained glasses[J]. Journal of Non-Crystalline Solids, 2006, 352(50/51): 5446-5451. [26] DENG L, MIYATANI K, AMMA S I, et al. Reaction mechanisms and interfacial behaviors of sodium silicate glass in an aqueous environment from reactive force field-based molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2019, 123(35): 21538-21547. [27] DENG L, MIYATANI K, SUEHARA M, et al. Ion-exchange mechanisms and interfacial reaction kinetics during aqueous corrosion of sodium silicate glasses[J]. Npj Materials Degradation, 2021, 5: 15. [28] GENESTE G, BOUYER F, GIN S. Hydrogen-sodium interdiffusion in borosilicate glasses investigated from first principles[J]. Journal of Non-Crystalline Solids, 2006, 352(28/29): 3147-3152. [29] ZAPOL P, HE H Y, KWON K D, et al. First-principles study of hydrolysis reaction barriers in a sodium borosilicate glass[J]. International Journal of Applied Glass Science, 2013, 4(4): 395-407. [30] GEORGE J L, BROW R K. In-situ characterization of borate glass dissolution kinetics by μ-Raman spectroscopy[J]. Journal of Non-Crystalline Solids, 2015, 426: 116-124. [31] COLLIN M, FOURNIER M, FRUGIER P, et al. Structure of international simple glass and properties of passivating layer formed in circumneutral pH conditions[J]. npj Materials Degradation, 2018, 2: 4. [32] JABRAOUI H, CHARPENTIER T, GIN S, et al. Atomic insights into the events governing the borosilicate glass-water interface[J].The Journal of Physical Chemistry C, 2021, 125(14): 7919-7931. |