[1] 邹贇涵,奚小波,张翼夫,等.真空玻璃技术现状与发展趋势[J].真空科学与技术学报,2022,42(8):563-572. ZOU Y H, XI X B, ZHANG Y F, et al. Status and development trend of vacuum glazing technology[J]. Chinese Journal of Vacuum Science and Technology, 2022, 42(8): 563-572 (in Chinese). [2] BALAN B A, ACHINTHA M. Assessment of stresses in float and tempered glass using eigenstrains[J]. Experimental Mechanics, 2015, 55(7): 1301-1315. [3] VARSHNEYA A K. Stronger glass products: lessons learned and yet to be learned[J]. International Journal of Applied Glass Science, 2018, 9(2): 140-155. [4] 李彦兵,岳高伟.钢化真空玻璃支撑点的排布方式[J].材料科学与工程学报,2016,34(6):955-959+966. LI Y B, YUE G W. Support point arrangement of tempered vacuum glass[J]. Journal of Materials Science and Engineering, 2016, 34(6): 955-959+966 (in Chinese). [5] FANG Y P, ARYA F. Evacuated glazing with tempered glass[J]. Solar Energy, 2019, 183: 240-247. [6] 董慧敏.钢化真空玻璃的热工性能研究[D].焦作:河南理工大学,2019:21-25. DONG H M. Thermal performance study of tempered vacuum glass[D]. Jiaozuo: Henan Polytechnic University, 2019: 21-25 (in Chinese). [7] 李 宏,李璟玮,陈 鹏,等.基于有限元分析的真空玻璃传热性能数值模拟研究[J].硅酸盐通报,2022,41(4):1148-1156+1176. LI H, LI J W, CHEN P, et al. Numerical simulation of heat transfer performance of vacuum glazing based on finite element analysis[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1148-1156+1176 (in Chinese). [8] HU D F, LIU C, LI Y B. Reliability analysis of toughened vacuum glass based on gray relation decision[J]. Mathematical Problems in Engineering, 2018, 2018: 2926480. [9] 赵骁真,胡东方,江春伟.全钢化真空玻璃传热系数和传热指标的灰关联分析[J].节能技术,2021,39(3):221-224+246. ZHAO X Z, HU D F, JIANG C W. Grey correlation analysis of heat transfer coefficient and heat transfer index of fully tempered vacuum glass[J]. Energy Conservation Technology, 2021, 39(3): 221-224+246 (in Chinese). [10] ZHU Q D, WU W D, YANG Y Y, et al. Finite element analysis of heat transfer performance of vacuum glazing with low-emittance coatings by using ANSYS[J]. Energy and Buildings, 2020, 206: 109584. [11] RODRIGUEZ-AKE A, XAMÁN J, HERNÁNDEZ-LÓPEZ I, et al. Numerical study and thermal evaluation of a triple glass window under Mexican warm climate conditions[J]. Energy, 2022, 239: 122075. [12] LEI W, GASTRO O, WANG Y Q, et al. Intelligent modelling to predict heat transfer coefficient of vacuum glass insulation based on thinking evolutionary neural network[J]. Artificial Intelligence Review, 2020, 53(8): 5907-5928. [13] MEMON S, FANG Y P, EAMES P C. The influence of low-temperature surface induction on evacuation, pump-out hole sealing and thermal performance of composite edge-sealed vacuum insulated glazing[J]. Renewable Energy, 2019, 135: 450-464. [14] MEMON S, EAMES P C. Design and development of lead-free glass-metallic vacuum materials for the construction and thermal performance of smart fusion edge-sealed vacuum glazing[J]. Energy and Buildings, 2020, 227: 110430. [15] 刘 慧.钢化真空玻璃高温温差下的变形特征[D].焦作:河南理工大学,2020:47-54. LIU H. Deformation characteristics of toughened vacuum glass under high temperature difference[D]. Jiaozuo: Henan Polytechnic University, 2020: 47-54 (in Chinese). [16] 李永明,孙景春,许 威,等.内外片温差作用下真空玻璃应力与变形分析[J].硅酸盐通报,2017,36(9):3128-3132+3138. LI Y M, SUN J C, XU W, et al. Stress and deformation analysis of vacuum glazing with the action of temperature difference between inner and outer glass[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(9): 3128-3132+3138 (in Chinese). [17] 苏 行,胡东方.温差作用下钢化真空玻璃封接部位强度分析[J].建筑节能(中英文),2021,49(3):78-81. SU H, HU D F. Strength analysis of sealing parts of toughened vacuum glass under the temperature difference[J]. Building Energy Efficiency, 2021, 49(3): 78-81 (in Chinese). [18] FANG Y P, HYDE T, EAMES P C, et al. Theoretical and experimental analysis of the vacuum pressure in a vacuum glazing after extreme thermal cycling[J]. Solar Energy, 2009, 83(9): 1723-1730. |