[1] JOULLIÉ A, CHRISTOL P, BARANOV A N, et al. Mid-infrared 2~5 μm heterojunction laser diodes[J]. Solid-State Mid-Infrared Laser Sources, 2003: 1-61. [2] ZHANG H L, BIAN J T, SUN D L, et al. Er3+-doped LuYSGG crystal as a potential 2.79 μm radiation-resistant laser material[J]. Optics & Laser Technology, 2022, 152: 108121. [3] FRAYSSINOUS C, FORTIN V, BÉRUBÉ J P, et al. Resonant polymer ablation using a compact 3.44 μm fiber laser[J]. Journal of Materials Processing Technology, 2018, 252: 813-820. [4] MAES F, FORTIN V, POULAIN S, et al. Room-temperature fiber laser at 392 μm[J]. Optica, 2018, 5(7): 761. [5] WANG Z H, ZHANG B, LIU J, et al. Recent developments in mid-infrared fiber lasers: status and challenges[J]. Optics & Laser Technology, 2020, 132: 106497. [6] EDWARDS G S. Mechanisms for soft-tissue ablation and the development of alternative medical lasers based on investigations with mid-infrared free-electron lasers[J]. Laser & Photonics Review, 2009, 3(6): 545-555. [7] SCHWAIGHOFER A, BRANDSTETTER M, LENDL B. Quantum cascade lasers (QCLs) in biomedical spectroscopy[J]. Chemical Society Reviews, 2017, 46(19): 5903-5924. [8] DUVAL S, BERNIER M, FORTIN V, et al. Femtosecond fiber lasers reach the mid-infrared[J]. Optica, 2015, 2(7): 623. [9] LEINDECKER N, MARANDI A, BYER R L, et al. Octave-spanning ultrafast OPO with 26~61 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser[J]. Optics Express, 2012, 20(7): 7046. [10] PENWELL S B, WHALEY-MAYDA L, TOKMAKOFF A. Single-stage MHz mid-IR OPA using LiGaS2 and a fiber laser pump source[J]. Optics Letters, 2018, 43(6): 1363-1366. [11] MALIS O, GMACHL C, SIVCO D L, et al. The quantum cascade laser: a versatile high-power semiconductor laser for mid-infrared applications[J]. Bell Labs Technical Journal, 2005, 10(3): 199-214. [12] 张泽涵,蒋 涛,湛治强,等.量子级联激光器的热管理研究进展[J].太赫兹科学与电子信息学报,2021,19(2):193-200. ZHANG Z H, JIANG T, ZHAN Z Q, et al. The progress of quantum cascade lasers thermal management[J]. Journal of Terahertz Science and Electronic Information Technology, 2021, 19(2): 193-200 (in Chinese). [13] JACKSON S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nature Photonics, 2012, 6(7): 423-431. [14] VODOPYANOV K L, GANIKHANOV F, MAFFETONE J P, et al. ZnGeP2 optical parametric oscillator with 3.8~12.4 μm tunability[J]. Optics Letters, 2000, 25(11): 841-843. [15] HONG Z F, REZVANI S, ZHANG Q B, et al. Ultrafast mid-IR laser pulses generation via chirp manipulated optical parametric amplification[J]. Applied Sciences, 2018, 8(5): 744. [16] DOUILLET A, ZONDY J J. Low-threshold, self-frequency-stabilized AgGaS2 continuous-wave subharmonic optical parametric oscillator[J]. Optics Letters, 1998, 23(16): 1259-1261. [17] IWAKUNI K, PORAT G, BUI T Q, et al. Phase-stabilized 100 mW frequency comb near 10 μm[J]. Applied Physics B, Lasers and Optics, 2018, 124(7): 128. [18] LV Z, SHEN Y, ZONG N, et al. 1.53 W all-solid-state nanosecond pulsed mid-infrared laser at 6.45 μm[J]. Optics Letters, 2022, 47(6): 1359-1362. [19] HEMMING A, RICHARDS J, DAVIDSON A, et al. 99 W mid-IR operation of a ZGP OPO at 25% duty cycle[J]. Optics Express, 2013, 21(8): 10062-10069. [20] LIPPERT E, FONNUM H, HAAKESTAD M W. Laser source with high pulse energy at 3~5 μm and 8~12 μm based on nonlinear conversion in ZnGeP2[C]//SPIE Security+Defence. Proc SPIE 9251, Technologies for Optical Countermeasures XI; and High-Power Lasers 2014: Technology and Systems, Amsterdam, Netherlands. 2014, 9251: 61-68. [21] ZHOU P, WANG X, MA Y, et al. Review on recent progress on mid-infrared fiber lasers[J]. Laser Physics, 2012, 22(11): 1744-1751. [22] LI J F, STUART D J, CHEN M, et al. Optimized design of high power mid-infrared Er3+, Pr3+-codoped ZBLAN fiber laser[C]//2010 Photonics Global Conference. Orchard, Singapore. IEEE, 2010: 1-5. [23] BERNIER M, FAUCHER D, CARON N, et al. Highly stable and efficient erbium-doped 28 μm all fiber laser[J]. Optics Express, 2009, 17(19): 16941. [24] ZHU X S, JAIN R. Demonstration of ≥8 Watt output from laser diode pumped mid-infrared fiber lasers[C]//2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference. Long Beach, CA, USA. IEEE, 2006: 1-2. [25] POLLNAU M, JACKSON S D. Energy recycling versus lifetime quenching in erbium-doped 3 μm fiber lasers[J]. IEEE Journal of Quantum Electronics, 2002, 38(2): 162-169. [26] GOLDING P, JACKSON S, KING T, et al. Energy-transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses[J]. Physical Review B, 2000, 62: 856-864. [27] NEWBURGH G A, DUBINSKII M. Power and efficiency scaling of Er ∶ZBLAN fiber laser[J]. Laser Physics Letters, 2021, 18(9): 095102. [28] BRIERLEY M C, FRANCE P W. Continuous wave lasing at 2.7 μm in an erbium-doped fluorozirconate fibre[J]. Electronics Letters, 1988, 24(15): 935. [29] JACKSON S D, KING T A, POLLNAU M. Diode-pumped 1.7 W erbium 3 μm fiber laser[J]. Optics Letters, 1999, 24(16): 1133-1135. [30] SANDROCK T, FISCHER D, GLAS P, et al. Diode-pumped 1 W Er-doped fluoride glass M-profile fiber laser emitting at 2.8 μm[J]. Optics Letters, 1999, 24(18): 1284-1286. [31] ZHU X S, JAIN R. 10-W-level diode-pumped compact 278 μm ZBLAN fiber laser[J]. Optics Letters, 2006, 32(1): 26. [32] TOKITA S, MURAKAMI M, SHIMIZU S, et al. Liquid-cooled 24 W mid-infrared Er ∶ZBLAN fiber laser[J]. Optics Letters, 2009, 34(20): 3062-3064. [33] GOYA K, UEHARA H, KONISHI D, et al. Stable 35-W Er: ZBLAN fiber laser with CaF2 end caps[J]. Applied Physics Express, 2019, 12(10): 102007. [34] BERNIER M, FAUCHER D, VALLÉE R, et al. Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm[J]. Optics Letters, 2007, 32(5): 454-456. [35] FAUCHER D, BERNIER M, ANDROZ G, et al. 20 W passively cooled single-mode all-fiber laser at 2.8 μm[J]. Optics Letters, 2011, 36(7): 1104-1106. [36] FORTIN V, BERNIER M, BAH S T, et al. 30 W fluoride glass all-fiber laser at 2.94 μm[J]. Optics Letters, 2015, 40(12): 2882-2885. [37] AYDIN Y O, FORTIN V, VALLÉE R, et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 2018, 43(18): 4542-4545. [38] FRERICHS C, TAUERMANN T. Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 μm[J]. Electronics Letters, 1994, 30(9): 706-707. [39] WANG J T, WEI J C, LIU W J, et al. 2.8 μm passively Q-switched Er ∶ZBLAN fiber laser with an Sb saturable absorber mirror[J]. Applied Optics, 2020, 59(29): 9165-9168. [40] YU Y J, CHEN X Y, WANG C, et al. A 200 kHz Q-switched adhesive-free bond composite Nd ∶YVO4 laser using a double-crystal RTP electro-optic modulator[J]. Chinese Physics Letters, 2012, 29(2): 024206. [41] SHEN Y L, WANG Y S, LUAN K P, et al. High peak power actively Q-switched mid-infrared fiber lasers at 3μm[J]. Applied Physics B, 2017, 123(4): 1-6. [42] TOKITA S, MURAKAMI M, SHIMIZU S, et al. 12 W Q-switched Er ∶ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 2011, 36(15): 2812-2814. [43] SOJKA L, PAJEWSKI L, LAMRINI S, et al. Experimental investigation of actively Q-switched Er3+ ∶ZBLAN fiber laser operating at around 2.8 μm[J]. Sensors (Basel, Switzerland), 2020, 20(16): 4642. [44] SÓJKA L, PAJEWSKI L, LAMRINI S, et al. High peak power Q-switched Er ∶ZBLAN fiber laser[J]. Journal of Lightwave Technology, 2021, 39(20): 6572-6578. [45] SHEN Y L, WANG Y S, ZHU F, et al. 200 μJ, 13 ns Er ∶ZBLAN mid-infrared fiber laser actively Q-switched by an electro-optic modulator[J]. Optics Letters, 2021, 46(5): 1141-1144. [46] TOKITA S, MURAKAMI M, SHIMIZU S, et al. Graphene Q-switching of a 3 μm Er ∶ZBLAN fiber laser[C]//Advanced Solid-State Lasers Congress. Paris. Washington, D.C.: OSA, 2013: AF2A.9. [47] WEI C, ZHU X S, WANG F, et al. Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser[J]. Optics Letters, 2013, 38(17): 3233-3236. [48] QIN Z P, XIE G Q, ZHANG H, et al. Black phosphorus as saturable absorber for the Q-switched Er ∶ZBLAN fiber laser at 2.8 μm[J]. Optics Express, 2015, 23(19): 24713-24718. [49] TANG P H, WU M, WANG Q K, et al. 2.8 μm pulsed Er3+ ∶ZBLAN fiber laser modulated by topological insulator[J]. IEEE Photonics Technology Letters, 2016, 28(14): 1573-1576. [50] SHEN Y L, WANG Y S, LUAN K P, et al. Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror[J]. Scientific Reports, 2016, 6: 26659. [51] LAI X, LI J F, LUO H Y, et al. High power passively Q-switched Er3+-doped ZBLAN fiber laser at 2.8 μm based on a semiconductor saturable absorber mirror[J]. Laser Physics Letters, 2018, 15(8): 085109. [52] WANG S W, TANG Y L, YANG J L, et al. MoS2 Q-switched 2.8 μm Er ∶ZBLAN fiber laser[J]. Laser Physics, 2019, 29(2): 025101. [53] WEI C, ZHU X S, NORWOOD R A, et al. Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 2012, 37(18): 3849-3851. [54] HABOUCHA A, FORTIN V, BERNIER M, et al. Fiber Bragg grating stabilization of a passively mode-locked 2.8 μm Er3+: fluoride glass fiber laser[J]. Optics Letters, 2014, 39(11): 3294-3297. [55] TANG P H, QIN Z P, LIU J, et al. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 2015, 40(21): 4855-4858. [56] QIN Z P, CHAI X L, XIE G Q, et al. Semiconductor saturable absorber mirror in the 3~5 μm mid-infrared region[J]. Optics Letters, 2022, 47(4): 890-893. [57] CIZMECIYAN M N, KIM J W, BAE S, et al. Graphene mode-locked femtosecond Cr ∶ZnSe laser at 2 500 nm[J]. Optics Letters, 2013, 38(3): 341-343. [58] SOTOR J, SOBON G, KOWALCZYK M, et al. Ultrafast thulium-doped fiber laser mode locked with black phosphorus[J]. Optics Letters, 2015, 40(16): 3885-3888. [59] MAO D, SHE X Y, DU B B, et al. Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets[J]. Scientific Reports, 2016, 6: 23583. [60] MA J, XIE G Q, LV P, et al. Graphene mode-locked femtosecond laser at 2 μm wavelength[J]. Optics Letters, 2012, 37(11): 2085-2087. [61] ZHU G W, ZHU X S, WANG F Q, et al. Graphene mode-locked fiber laser at 2.8 μm[J]. IEEE Photonics Technology Letters, 2016, 28(1): 7-10. [62] PAWLISZEWSKA M, GE Y Q, LI Z J, et al. Fundamental and harmonic mode-locking at 2.1 μm with black phosphorus saturable absorber[J]. Optics Express, 2017, 25(15): 16916-16921. [63] QIN Z P, XIE G Q, ZHAO C J, et al. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber[J]. Optics Letters, 2016, 41(1): 56-59. [64] WEI C, LUO H Y, ZHANG H, et al. Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber[J]. Laser Physics Letters, 2016, 13(10): 105108. [65] YAN Z Y, LI T, ZHAO J, et al. Passively Q-switched 2.85 μm Er ∶Lu2O3 laser with WSe2[J]. Laser Physics Letters, 2018, 15(8): 085802. [66] GUO C Y, WEI J C, YAN P G, et al. Mode-locked fiber laser at 2.8 μm using a chemical-vapor-deposited WSe2 saturable absorber mirror[J]. Applied Physics Express, 2020, 13(1): 012013. [67] HU T, JACKSON S D, HUDSON D D. Ultrafast pulses from a mid-infrared fiber laser[J]. Optics Letters, 2015, 40(18): 4226-4228. [68] QIN Z P, XIE G Q, GU H A, et al. Mode-locked 2.8 μm fluoride fiber laser: from soliton to breathing pulse[J]. Advanced Photonics, 2019, 1: 065001. [69] GU HONGAN, QIN Z P, XIE G Q, et al. Generation of 131 fs mode-locked pulses from 2.8 μm Er ∶ZBLAN fiber laser[J]. Chinese Optics Letters, 2020, 18(3): 031402. [70] HUANG J, PANG M, JIANG X, et al. Sub-two-cycle octave-spanning mid-infrared fiber laser[J]. Optica, 2020, 7(6): 574. [71] ZHOU Y C, QIN Z P, YUAN P, et al. 2-MW peak-power pulses from a dispersion-managed fluoride fiber amplifier at 2.8 μm[J]. Optics Letters, 2021, 46(20): 5104. [72] CUI Y F, CHEN M S, DU W Z, et al. Generation of 85 fs mid-IR pulses with up to 2.4 W average power using an Er ∶ZBLAN fiber mode-locked oscillator and a nonlinear amplifier[J]. Optics Express, 2021, 29(26): 42924. [73] YU L P, LIANG J H, HUANG S T, et al. Average-power (4.13 W) 59 fs mid-infrared pulses from a fluoride fiber laser system[J]. Optics Letters, 2022, 47(10): 2562-2565. [74] LIBATIQUE N J C, TAFOYA J D, VISWANATHAN N, et al. A “field-usable” diode-pumped/spl sim/120-nm wavelength-tunable CW mid-IR fiber laser[C]//Conference on Lasers and Electro-Optics (CLEO 2000). Technical Digest. Postconference Edition. TOPS Vol.39 (IEEE Cat. No.00CH37088). San Francisco, CA, USA. IEEE,: 548-549. [75] ZHU X S, JAIN R. Compact 2 W wavelength-tunable Er ∶ZBLAN mid-infrared fiber laser[J]. Optics Letters, 2007, 32(16): 2381-2383. [76] TOKITA S, HIROKANE M, MURAKAMI M, et al. Stable 10 W Er ∶ZBLAN fiber laser operating at 2.71~2.88 μm[J]. Optics Letters, 2010, 35(23): 3943-3945. [77] LIU J, HUANG B, TANG P H, et al. Volume bragg grating based tunable continuous-wave and Bi2Te3 Q-switched Er3+ ∶ZBLAN fiber laser[C]//Conference on Lasers and Electro-Optics. San Jose, California. Washington, D.C.: OSA, 2016: AW1K.7. [78] WEI C, LUO H Y, SHI H X, et al. Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 28 μm[J]. Optics Express, 2017, 25(8): 8816. [79] WANG J F, ZHU X S, NORWOOD R A, et al. Widely wavelength tunable Dy3+/Er3+ co-doped ZBLAN fiber lasers[J]. Optics Express, 2021, 29(23): 38646. |