[1] 陆现彩,尹 琳,赵连泽,等.常见层状硅酸盐矿物的表面特征[J].硅酸盐学报,2003,31(1):60-65. LU X C, YIN L, ZHAO L Z, et al. Surface characteristics of general phyllosilicate minerals[J]. Journal of the Chinese Ceramic Society, 2003, 31(1): 60-65 (in Chinese). [2] YOUNG R A, HEWAT A W. Verification of the triclinic crystal structure of kaolinite[J]. Clays and Clay Minerals, 1988, 36(3): 225-232. [3] WHITE C E, PROVIS J L, RILEY D P, et al. What is the structure of kaolinite? reconciling theory and experiment[J]. The Journal of Physical Chemistry B, 2009, 113(19): 6756-6765. [4] 江云水,彭红瑞.黏土矿物的X射线衍射分析[J].青岛科技大学学报(自然科学版),2017,38(s1):139-141+146. JIANG Y S, PENG H R. Analysis of clay minerals by X-ray diffraction method[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2017, 38(s1): 139-141+146 (in Chinese). [5] 杜雅琴,张 进,赵建国,等.煤系高岭土的制备及其在涂料中的应用研究[J].涂料工业,2019,49(4):53-57. DU Y Q, ZHANG J, ZHAO J G, et al. Preparation of coal-based kaolin and its application in coatings[J]. Paint & Coatings Industry, 2019, 49(4): 53-57 (in Chinese). [6] 李国栋,殷尧禹,卢 瑞,等.高岭土提纯工艺及其应用研究进展[J].矿产保护与利用,2018(4):142-150. LI G D, YIN Y Y, LU R, et al. Purification process and application progress of kaolin[J]. Conservation and Utilization of Mineral Resources, 2018(4): 142-150 (in Chinese). [7] 李 霞,邓昭平,李 晶.高岭土在盐湖卤水提锂中的应用[J].化工进展,2017,36(6):2057-2063. LI X, DENG Z P, LI J. Extraction of lithium from salt lake brine with kaolinite[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2057-2063 (in Chinese). [8] 饶文秀,吕国诚,廖立兵.高岭石改性及其对流化催化裂化催化剂性能的影响[J].硅酸盐学报,2019,47(6):848-854. RAO W X, LV G C, LIAO L B. Modification of kaolinite and its effect on the catalytic cracking performance of fluid catalytic cracking[J]. Journal of the Chinese Ceramic Society, 2019, 47(6): 848-854 (in Chinese). [9] KAMBEL R D, ALIYU B A, BARMINAS J T, et al. Synthesis and application of polylactic acid/kaolin nanocomposite as a flame retardant in flexible polyurethane foam[J]. International Journal of Materials and Chemistry, 2017, 7(1): 14-19. [10] 陈尚斌,张 楚,刘 宇.页岩气赋存状态及其分子模拟研究进展与展望[J].煤炭科学技术,2018,46(1):36-44. CHEN S B, ZHANG C, LIU Y. Research progress and prospect of shale gas occurrence and its molecular simulation[J]. Coal Science and Technology, 2018, 46(1): 36-44 (in Chinese). [11] 凤孟龙,龙 军,周 涵,等.分子模拟技术研究烃分子在分子筛吸附研究进展[J].计算机与应用化学,2018,35(3):243-250. FENG M L, LONG J, ZHOU H, et al. The applications of molecular simulation in hydrocarbons adsorption on zeolites[J]. Computers and Applied Chemistry, 2018, 35(3): 243-250 (in Chinese). [12] FUCHS A H, BOUTIN A, TEULER J M, et al. Development and application of molecular simulation methods for the screening of industrial zeolite adsorbents[J]. Oil & Gas Science and Technology-Revue De l'IFP, 2006, 61(4): 571-578. [13] 朱 宇,陆小华,丁 皓,等.分子模拟在化工应用中的若干问题及思考[J].化工学报,2004,55(8):1213-1223. ZHU Y, LU X H, DING H, et al. Molecular simulation in chemical engineering[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(8): 1213-1223 (in Chinese). [14] 张亚云,陈 勉,邓 亚,等.温压条件下蒙脱石水化的分子动力学模拟[J].硅酸盐学报,2018,46(10):1489-1498. ZHANG Y Y, CHEN M, DENG Y, et al. Molecular dynamics simulation of temperature and pressure effects on hydration characteristics of montmorillonites[J]. Journal of the Chinese Ceramic Society, 2018, 46(10): 1489-1498 (in Chinese). [15] AKKERMANS R L C, SPENLEY N A, ROBERTSON S H. Monte Carlo methods in materials studio[J]. Molecular Simulation, 2013, 39(14/15): 1153-1164. [16] 崔守鑫,胡海泉,肖效光,等.分子动力学模拟基本原理和主要技术[J].聊城大学学报(自然科学版),2005,18(1):30-34. CUI S X, HU H Q, XIAO X G, et al. The basic principles and methods of molecular dynamics simulation[J]. Journal of Liaocheng Teachers University, 2005, 18(1): 30-34 (in Chinese). [17] 张立红,张 军.分子动力学模拟方法及其误差分析[J].青岛大学学报(自然科学版),2003,16(2):24-28. ZHANG L H, ZHANG J. Molecular dynamics simulation and its error analyzing[J]. Journal of Qingdao University (Natural Science), 2003, 16(2): 24-28 (in Chinese). [18] 樊康旗,贾建援.经典分子动力学模拟的主要技术[J].微纳电子技术,2005,42(3):133-138. FAN K Q, JIA J Y. An overview on classical molecular dynamics simulation[J]. Micronanoelectronic Technology, 2005, 42(3): 133-138 (in Chinese). [19] 文玉华,朱如曾,周富信,等.分子动力学模拟的主要技术[J].力学进展,2003,33(1):65-73. WEN Y H, ZHU R Z, ZHOU F X, et al. An overview on molecular dynamics simulation[J]. Advances in Mechanics, 2003, 33(1): 65-73 (in Chinese). [20] DAAN F. Understanding molecular simulation: from algorithms to applications[M]. San Diego: Academic Press, 2002. [21] 陈正隆,徐为人.分子模拟的理论与实践[M].北京:化学工业出版社,2007. CHEN Z L, XU W R. Theory and practice of molecular simulation[M]. Beijing: Chemical Industry Press, 2007 (in Chinese). [22] 王建国,秦张峰,郭向云.计算机模拟在分子筛研究中的应用[J].燃料化学学报,1999,27(s1):149-157. WANG J G, QIN Z F, GUO X Y. Computer simulations in zeolites[J]. Journal of Fuel Chemistry and Technology, 1999, 27(s1): 149-157 (in Chinese). [23] GRUNER J W. The crystal structure of kaolinite[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 1932, 83(1/2/3/4/5/6): 75-88. [24] BISH D L. Rietveld refinement of the kaolinite structure at 1.5 K[J]. Clays and Clay Minerals, 1993, 41(6): 738-744. [25] 李海普,胡岳华,王淀佐,等.阳离子表面活性剂与高岭石的相互作用机理[J].中南大学学报(自然科学版),2004,35(2):228-233. LI H P, HU Y H, WANG D Z, et al. Mechanism of interaction between cationic surfactant and kaolinite[J]. Journal of Central South University of Technology (Natural Science), 2004, 35(2): 228-233 (in Chinese). [26] 胡雪飞.高岭石表面性质及其吸附Pb(Ⅱ)的密度泛函理论研究[D].赣州:江西理工大学,2018. HU X F. Surface properties of kaolinite and adsorption of Pb(Ⅱ) by density functional theory[D]. Ganzhou: Jiangxi University of Science and Technology, 2018 (in Chinese). [27] 张志忠,娄培杰,仪志毅,等.基于Materials Studio软件的泥岩矿物成分水化机理研究[J].建井技术,2020,41(5):52-57. ZHANG Z Z, LOU P J, YI Z Y, et al. Study on hydration mechanism of mudstone mineral composition based on Materials Studio software[J]. Mine Construction Technology, 2020, 41(5): 52-57 (in Chinese). [28] 陈 军,闵凡飞,刘令云,等.不同胺/铵阳离子在高岭石(001)面吸附的密度泛函计算[J].煤炭学报,2016,41(12):3115-3121. CHEN J, MIN F F, LIU L Y, et al. DFT calculations of different amine/ammonium cations adsorption on kaolinite(001) surface[J]. Journal of China Coal Society, 2016, 41(12): 3115-3121 (in Chinese). [29] NIU J N, WANG D X, WU A C, et al. Molecular simulation study of argon adsorption on kaolinite surface with an experimental comparison[J]. Applied Surface Science, 2019, 478: 230-236. [30] 韩永华,刘文礼,陈建华,等.羟基钙在高岭石两种(001)晶面的吸附机理[J].煤炭学报,2016,41(3):743-750. HAN Y H, LIU W L, CHEN J H, et al. Adsorption mechanism of hydroxyl calcium on two kaolinite(001) surface[J]. Journal of China Coal Society, 2016, 41(3): 743-750 (in Chinese). [31] WANG K, ZHANG B, KANG T H. The effect of mg, Fe(II), and Al doping on CH4: adsorption and diffusion on the surface of Na-kaolinite (001) by molecular simulations[J]. Molecules, 2020, 25(4): 1001. [32] ZHANG X, ZHAO R B, ZHANG N, et al. Insight to unprecedented catalytic activity of double-nitrogen defective metal-free catalyst: key role of coal gangue[J]. Applied Catalysis B: Environmental, 2020, 263: 118316. [33] SCHOLTZOVÁ E, TUNEGA D. Prediction of mechanical properties of grafted kaolinite: a DFT study[J]. Applied Clay Science, 2020, 193: 105692. [34] 周丽萍.水合Pb(Ⅱ)离子在掺杂高岭石表面吸附的密度泛函理论研究[D].赣州:江西理工大学,2020. ZHOU L P. Study on the adsorption of hydrated lead(Ⅱ) on the surface of doped kaolinite by density functional theory[D]. Ganzhou: Jiangxi University of Science and Technology, 2020 (in Chinese). [35] RYBKA K, SUWAĿA K, MAZIARZ P, et al. Efficiency of Pb(II) and Mo(VI) removal by kaolinite impregnated with zero-valent iron particles[J]. Mineralogia, 2017, 48(1/2/3/4): 71-86. [36] 张志军,李亚南,佟震阳,等.高岭石对金属阳离子的吸附特性研究[J].矿业科学学报,2017,2(3):294-300. ZHANG Z J, LI Y N, TONG Z Y, et al. Adsorption characteristics of metal ions on kaolinite[J]. Journal of Mining Science and Technology, 2017, 2(3): 294-300 (in Chinese). [37] CHEN Z C, ZHAO Y L, XU X W, et al. Structure and dynamics of Cs+ in kaolinite: insights from molecular dynamics simulations[J]. Computational Materials Science, 2020, 171: 109256. [38] ZHU D M, QIU T S, ZHONG J F, et al. Molecular dynamics simulation of aluminum inhibited leaching during ion-adsorbed type rare earth ore leaching process[J]. Journal of Rare Earths, 2019, 37(12): 1334-1340. [39] ZHANG Z J, ZHOU Q, ZHUANG L, et al. Adsorption of Ca(II) and K(I) on the kaolinite surface: a DFT study with an experimental verification[J]. Molecular Physics, 2021, 119(9): e1896047. [40] CHEN G B, ZHAO H Z, LI X, et al. Theoretical insights into the adsorption mechanism of Cd(II) on the basal surfaces of kaolinite[J/OL]. Journal of Hazardous Materials, 2022, 422: 126795. https://doi.org/10.1016/j.jhazmat.2021.126795. [41] 杨 飞,房晓红,曾凡桂,等.高岭石表面吸附铅和镉的模拟计算[J].矿产综合利用,2020(5):196-202+100. YANG F, FANG X H, ZENG F G, et al. Simulation calculation of adsorption of lead and cadmium on kaolinite surface[J]. Multipurpose Utilization of Mineral Resources, 2020(5): 196-202+100 (in Chinese). [42] SARI A, TUZEN M. Cd(II) adsorption from aqueous solution by raw and modified kaolinite[J]. Applied Clay Science, 2014, 88/89: 63-72. [43] ZHONG Z P, LI J F, MA Y Y, et al. The adsorption mechanism of heavy metals from coal combustion by modified kaolin: experimental and theoretical studies[J]. Journal of Hazardous Materials, 2021, 418: 126256. [44] MA Y, LU G W, SHAO C J, et al. Molecular dynamics simulation of hydrocarbon molecule adsorption on kaolinite (001) surface[J]. Fuel, 2019, 237: 989-1002. [45] LIU Y L, HOU J. Selective adsorption of CO2/CH4 mixture on clay-rich shale using molecular simulations[J]. Journal of CO2 Utilization, 2020, 39: 101143. [46] 唐巨鹏,孙胜杰,包思远.高岭石甲烷吸附规律的分子模拟研究[J].油气地质与采收率,2019,26(4):43-49. TANG J P, SUN S J, BAO S Y. Molecular simulation of methane adsorption on kaolinite[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(4): 43-49 (in Chinese). [47] 张学庆,李贤庆,李阳阳,等.煤系页岩气储层研究进展[J].中国煤炭地质,2020,32(2):59-66. ZHANG X Q, LI X Q, LI Y Y, et al. Research progress of reservoir of shale gas in coal measures[J]. Coal Geology of China, 2020, 32(2): 59-66 (in Chinese). [48] HAN Y H, LIU W L, ZHOU J, et al. Interactions between kaolinite AlOH surface and sodium hexametaphosphate[J]. Applied Surface Science, 2016, 387: 759-765. [49] ZHANG X L, ZHAO Y L, ZHANG Z H, et al. Investigation of the interaction between xanthate and kaolinite based on experiments, molecular dynamics simulation, and density functional theory[J]. Journal of Molecular Liquids, 2021, 336: 116298. [50] CHANG Z Y, SUN C B, KOU J, et al. Experimental and molecular dynamics simulation study on the effect of polyacrylamide on bauxite flotation[J]. Minerals Engineering, 2021, 164: 106810. [51] ZIEMIAN'SKI P P, DERKOWSKI A, SZCZUROWSKI J, et al. The structural versus textural control on the methane sorption capacity of clay minerals[J]. International Journal of Coal Geology, 2020, 224: 103483. |