[1] CUNNINGHAM P R, MILLER S A. Quantitative assessment of alkali-activated materials: environmental impact and property assessments[J]. Journal of Infrastructure Systems, 2020, 26(3): 04020021. [2] MASTALI M, KINNUNEN P, DALVAND A, et al. Drying shrinkage in alkali-activated binders: a critical review[J]. Construction and Building Materials, 2018, 190: 533-550. [3] 苏岳威,张 宁,吕宪俊,等.水玻璃模数对矿渣基胶凝材料水化特性及动力学的影响[J].材料导报,2020,34(s1):271-276. SU Y W, ZHANG N, LYU X J, et al. Effects of water glass modulus on the hydration properties and kinetics of slag-based cementitious materials[J]. Materials Reports, 2020, 34(s1): 271-276 (in Chinese). [4] 陈 科,杨长辉,潘 群,等.碱-矿渣水泥砂浆的干缩特性[J].重庆大学学报,2012,35(5):64-68. CHEN K, YANG C H, PAN Q, et al. Drying shrinkage characteristics of alkali-slag cement mortar[J]. Journal of Chongqing University, 2012, 35(5): 64-68 (in Chinese). [5] SINGH N B, MIDDENDORF B. Geopolymers as an alternative to Portland cement: an overview[J]. Construction and Building Materials, 2020, 237: 117455. [6] THOMAS R J, LEZAMA D, PEETHAMPARAN S. On drying shrinkage in alkali-activated concrete: improving dimensional stability by aging or heat-curing[J]. Cement and Concrete Research, 2017, 91: 13-23. [7] 金 宇,冯伟鹏,董志君,等.辅助胶凝材料玻璃体结构与胶凝活性的研究进展[J].材料导报,2021,35(3):3016-3020. JIN Y, FENG W P, DONG Z J, et al. Research progress on the glass structure of supplementary cementitious materials with relation to their hydraulic reactivity[J]. Materials Reports, 2021, 35(3): 3016-3020 (in Chinese). [8] 厉 超.矿渣、高/低钙粉煤灰玻璃体及其水化特性研究[D].北京:清华大学,2011. LI C. Research on the glass phase of slag, high calcium fly ash and low calcium fly ash and their hydration mechanism[D]. Beijing: Tsinghua University, 2011 (in Chinese). [9] 朱立德,陈 晶,刘泽宇,等.高炉矿渣微粉的火山灰活性评价与影响因素[J].中国水泥,2020(8):73-78. ZHU L D, CHEN J, LIU Z Y, et al. Evaluation and influence factors of volcanic ash activity of blast furnace slag powder[J]. China Cement, 2020(8): 73-78 (in Chinese). [10] LI Y, SUN H H, LIU X M, et al. Effect of phase separation structure on cementitious reactivity of blast furnace slag[J]. Science in China Series E: Technological Sciences, 2009, 52(9): 2695-2699. [11] MOSTAFA N Y, EL-HEMALY S A S, AL-WAKEEL E I, et al. Characterization and evaluation of the hydraulic activity of water-cooled slag and air-cooled slag[J]. Cement and Concrete Research, 2001, 31(6): 899-904. [12] 李 静.氢氧化钠-矿渣和改性水玻璃-矿渣胶凝材料的组成与结构及其对碳化和干缩性能的影响[D].广州:华南理工大学,2020. LI J. The composition and microstructure of slag-based cementitious material activated by sodium hydroxide and modified water glass and their influence on its carbonation and drying shrinkage performance[D]. Guangzhou: South China University of Technology, 2020 (in Chinese). [13] 张兰芳.碱激发矿渣水泥和混凝土[M].成都:西南交通大学出版社,2018. ZHANG L F. Alkali activated slag cement and concrete[M]. Chengdu: Southwest Jiaotong University Press, 2018 (in Chinese). [14] 吴世剑,张爱民.碱矿渣水泥水化及硬化机理研究[J].中国矿山工程,2018,47(2):20-22+61. WU S J, ZHANG A M. Hydration and hardening mechanism study of alkali-activated slag cement[J]. China Mine Engineering, 2018, 47(2): 20-22+61 (in Chinese). [15] LI C, SUN H H, LI L T. A review: the comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements[J]. Cement and Concrete Research, 2010, 40(9): 1341-1349. [16] SKIBSTED J, SNELLINGS R. Reactivity of supplementary cementitious materials (SCMs) in cement blends[J]. Cement and Concrete Research, 2019, 124: 105799. [17] QIN Y L, LIU H, YANG Y H. Structure evolution of blast furnace slag with high Al2O3 Content and 5 mass% TiO2 via molecular dynamics simulation and Fourier transform infrared spectroscopy[J]. Metallurgical Research & Technology, 2017, 115(1): 113. [18] LIANG D, YAN Z M, LV X, et al. Transition of blast furnace slag from silicate-based to aluminate-based: structure evolution by molecular dynamics simulation and Raman spectroscopy[J]. Metallurgical and Materials Transactions B, 2017, 48(1): 573-581. [19] DUXSON P, PROVIS J L. Designing precursors for geopolymer cements[J]. Journal of the American Ceramic Society, 2008, 91(12): 3864-3869. [20] SHIMODA K, TOBU Y, KANEHASHI K, et al. Total understanding of the local structures of an amorphous slag: perspective from multi-nuclear (29Si, 27Al, 17O, 25Mg, and 43Ca) solid-state NMR[J]. Journal of Non-Crystalline Solids, 2008, 354(10/11): 1036-1043. [21] LIU Y, LV X, LI B, et al. Relationship between structure and viscosity of CaO-SiO2-MgO-30.00wt% Al2O3 slag by molecular dynamics simulation with FT-IR and Raman spectroscopy[J]. Ironmaking & Steelmaking, 2018, 45(6): 492-501. [22] HU X G, SHEN F M, ZHENG H Y, et al. Effect of melt structure property on Al2O3 activity in CaO-SiO2-Al2O3-MgO system for blast furnace slag with different Al2O3 content[J]. Metallurgical Research & Technology, 2021, 118(5): 515. [23] KINNUNEN P, SREENIVASAN H, CHEESEMAN C R, et al. Phase separation in alumina-rich glasses to increase glass reactivity for low-CO2 alkali-activated cements[J]. Journal of Cleaner Production, 2019, 213: 126-133. [24] 徐 彬,蒲心诚.矿渣玻璃体微观分相结构研究[J].重庆建筑大学学报,1997,19(4):53-60. XU B, PU X C. Study on microscopic phase separation structure of slag glass [J]. Journal of Chongqing Jianzhu University, 1997, 19(4): 53-60 (in Chinese). [25] 袁润章.胶凝材料学[M].第2版.武汉:武汉工业大学出版社,1996. YUAN R Z. Cementitious materials[M]. 2nd ed. Wuhan: Wuhan University of Technology Press, 1996 (in Chinese). [26] 姜奉华.碱激发矿渣微粉胶凝材料的组成、结构和性能的研究[D].西安:西安建筑科技大学,2008. JIANG F H. A study on the composition, structure and performance of slag-fines cementing materials alkali-activated[D]. Xi'an: Xi'an University of Architecture and Technology, 2008 (in Chinese). [27] 代新祥,文梓芸.碱激活水泥研究进展[J].材料导报,2001,15(9):42-44. DAI X X, WEN Z Y. Progress in research on alkali-activated cement[J]. Materials Review, 2001, 15(9): 42-44 (in Chinese). [28] 李东旭.在低钙玻璃态胶凝材料的研究进展[C]//第一届全国化学激发胶凝材料研讨会论文集,南京,2004. LI D X. Research progress of low calcium glass cementable materials[C]//Proceedings of the 1st National Conference on Chemically stimulated Cementable Materials, Nanjing, 2004 (in Chinese). [29] 柯国军.土木工程材料[M].北京:北京大学出版社,2012. KE G J. Civil engineering materials[M]. Beijing: Peking University Press, 2012 (in Chinese). [30] ALLAHVERDI A, SHAVERDI B, KANI E. N. influence of sodium oxide on properties of fresh and hardened paste of alkali-activated blast-furnace slag[J]. International Journal of Civil Engineering, 2010, 8(4): 304-314. [31] CARTWRIGHT C, RAJABIPOUR F, RADLIŃSKA A. Shrinkage characteristics of alkali-activated slag cements[J]. Journal of Materials in Civil Engineering, 2015, 27(7). [32] 王 峰,张耀君,宋 强,等.NaOH碱激发矿渣地质聚合物的研究[J].非金属矿,2008,31(3):9-11+21. WANG F, ZHANG Y J, SONG Q, et al. Study on synthesis of geopolymer by NaOH alkali-activated slag powder[J]. Non-Metallic Mines, 2008, 31(3): 9-11+21 (in Chinese). [33] GEBREGZIABIHER B S, THOMAS R, PEETHAMPARAN S. Very early-age reaction kinetics and microstructural development in alkali-activated slag[J]. Cement and Concrete Composites, 2015, 55: 91-102. [34] BERNAL S A, PROVIS J L, MYERS R J, et al. Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders[J]. Materials and Structures, 2015, 48(3): 517-529. [35] YANG B, JANG J G. Environmentally benign production of one-part alkali-activated slag with calcined oyster shell as an activator[J]. Construction and Building Materials, 2020, 257: 119552. [36] BILGINER A, CANBEK O, TURHAN ERDOĞAN S. Activation of blast furnace slag with soda production waste[J]. Journal of Materials in Civil Engineering, 2020, 32(1): 04019316. [37] RAKHIMOVA N R, RAKHIMOV R Z. Alkali-activated cements and mortars based on blast furnace slag and red clay brick waste[J]. Materials & Design, 2015, 85: 324-331. [38] DING Y, DAI J G, SHI C J. Mechanical properties of alkali-activated concrete: a state-of-the-art review[J]. Construction and Building Materials, 2016, 127: 68-79. [39] WARDHONO A, GUNASEKARA C, LAW D W, et al. Comparison of long term performance between alkali activated slag and fly ash geopolymer concretes[J]. Construction and Building Materials, 2017, 143: 272-279. [40] 郑登登,季 韬,梁咏宁.苛性碱对碱矿渣水泥砂浆抗压强度和抗折强度的影响[J].福州大学学报(自然科学版),2019,47(6):800-806. ZHENG D D, JI T, LIANG Y N. Effect of caustic alkali on compressive strength and flexural strength of alkali-activated slag cement mortar[J]. Journal of Fuzhou University (Natural Science Edition), 2019, 47(6): 800-806 (in Chinese). [41] TÄNZER R, JIN Y, STEPHAN D. Alkali activated slag binder: effect of cations from silicate activators[J]. Materials and Structures, 2016, 50(1): 1-9. [42] 杜天玲,刘 英,于咏妍,等.水玻璃对粉煤灰矿渣地聚合物强度的影响及激发机理[J].公路交通科技,2021,38(1):41-49. DU T L, LIU Y, YU Y Y, et al. Influence of sodium silicate on fly ash slag geopolymer strength and stimulating mechanism[J]. Journal of Highway and Transportation Research and Development, 2021, 38(1): 41-49 (in Chinese). [43] VILAPLANA J L, BAEZA F J, GALAO O, et al. Mechanical properties of alkali activated blast furnace slag pastes reinforced with carbon fibers[J]. Construction and Building Materials, 2016, 116: 63-71. [44] LIU J P, TIAN Q, MIAO C W. Investigation on the plastic shrinkage of cementitious materials under drying conditions: mechanism and theoretical model[J]. Magazine of Concrete Research, 2012, 64(6): 551-561. [45] YE H L, RADLIŃSKA A. Shrinkage mechanisms of alkali-activated slag[J]. Cement and Concrete Research, 2016, 88: 126-135. [46] GRASLEY Z C, LEUNG C K. Desiccation shrinkage of cementitious materials as an aging, poroviscoelastic response[J]. Cement and Concrete Research, 2011, 41(1): 77-89. [47] GRASLEY Z C, LANGE D A, D'AMBROSIA M D. Internal relative humidity and drying stress gradients in concrete[J]. Materials and Structures, 2006, 39(9): 901-909. [48] 张永存,李青宁.基于毛细孔张力理论的混凝土干缩模型[J].湖南科技大学学报(自然科学版),2015,30(4):69-73. ZHANG Y C, LI Q N. Concrete drying- shrinkage model based on the theory of capillary tension[J]. Journal of Hunan University of Science & Technology (Natural Science Edition), 2015, 30(4): 69-73 (in Chinese). [49] 韩宇栋,张 君,岳清瑞,等.现代混凝土收缩研究评述[J].混凝土,2019(2):1-12+16. HAN Y D, ZHANG J, YUE Q R, et al. Review on shrinkage of modern concrete[J]. Concrete, 2019(2): 1-12+16 (in Chinese). [50] HANSEN T C. Drying shrinkage of concrete due to capillary action[J]. Matériaux et Construction, 1969, 2(1): 7-9. [51] COLLINS F, SANJAYAN J G. Effect of pore size distribution on drying shrinking of alkali-activated slag concrete[J]. Cement and Concrete Research, 2000, 30(9): 1401-1406. [52] HANSEN W. Drying shrinkage mechanisms in Portland cement paste[J]. Journal of the American Ceramic Society, 1987, 70(5): 323-328. [53] YE H L, CARTWRIGHT C, RAJABIPOUR F, et al. Understanding the drying shrinkage performance of alkali-activated slag mortars[J]. Cement and Concrete Composites, 2017, 76: 13-24. [54] DURAN ATIŞ C, BILIM C, ÇELIK Ö, et al. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar[J]. Construction and Building Materials, 2009, 23(1): 548-555. [55] MELO N A A, CINCOTTO M A, REPETTE W. Drying and autogenous shrinkage of pastes and mortars with activated slag cement[J]. Cement and Concrete Research, 2008, 38(4): 565-574.[56] BALLEKERE K D, PEETHAMPARAN S, NGAMI M. Autogenous shrinkage of alkali activated slag mortars: basic mechanisms and mitigation methods[J]. Cement and Concrete Research, 2018, 109: 1-9. [57] BAKHAREV T, SANJAYAN J G, CHENG Y B. Effect of admixtures on properties of alkali-activated slag concrete[J]. Cement and Concrete Research, 2000, 30(9): 1367-1374. [58] AYDIN S. A ternary optimisation of mineral additives of alkali activated cement mortars[J]. Construction and Building Materials, 2013, 43: 131-138. [59] ABDOLLAHNEJAD Z, MASTALI M, WOOF B, et al. High strength fiber reinforced one-part alkali activated slag/fly ash binders with ceramic aggregates: microscopic analysis, mechanical properties, drying shrinkage, and freeze-thaw resistance[J]. Construction and Building Materials, 2020, 241: 118129. [60] 张兰芳,王道峰,岳 瑜.纤维增强碱激发水泥基材料的研究进展[J].材料科学与工程学报,2019,37(2):325-330. ZHANG L F, WANG D F, YUE Y. Research progress of fiber reinforced alkali-activated cement-based composites[J]. Journal of Materials Science and Engineering, 2019, 37(2): 325-330 (in Chinese). [61] 苏 英.合成纤维增韧碱矿渣混凝土[M].北京:化学工业出版社,2016. SU Y. Tough alkali slag concrete with synthetic fiber[M]. Beijing: Chemical Industry Press, 2016 (in Chinese). |