[1] HEPBURN C, ADLEN E, BEDDINGTON J, et al. The technological and economic prospects for CO2 utilization and removal[J]. Nature, 2019, 575(7781): 87-97. [2] SIEGELMAN R L, MILNER P J, KIM E J, et al. Challenges and opportunities for adsorption-based CO2 capture from natural gas combined cycle emissions[J]. Energy & Environmental Science, 2019, 12(7): 2161-2173. [3] 饶文秀,吕国诚,廖立兵.高岭石改性及其对流化催化裂化催化剂性能的影响[J].硅酸盐学报,2019,47(6):848-854. RAO W X, LV G C, LIAO L B. Modification of kaolinite and its effect on the catalytic cracking performance of fluid catalytic cracking[J]. Journal of the Chinese Ceramic Society, 2019, 47(6): 848-854 (in Chinese). [4] CHEN Y H, LU D L. CO2 capture by kaolinite and its adsorption mechanism[J]. Applied Clay Science, 2015, 104: 221-228. [5] WANG W L, XIAO J, WEI X L, et al. Development of a new clay supported polyethylenimine composite for CO2 capture[J]. Applied Energy, 2014, 113: 334-341. [6] NIU M Y, YANG H M, ZHANG X C, et al. Amine-impregnated mesoporous silica nanotube as an emerging nanocomposite for CO2 capture[J]. ACS Applied Materials & Interfaces, 2016, 8(27): 17312-17320. [7] 谢晶晶.热处理凹凸棒石结构、物性演化及其对磷的吸附作用[D].合肥:合肥工业大学,2013. XIE J J. Structure and physical-chemistry property evolution of heat-treatment palygorskite as well as adsorption for phosphorus[D]. Hefei: Hefei University of Technology, 2013 (in Chinese). [8] OUYANG J, GU W, ZHENG C H, et al. Polyethyleneimine (PEI) loaded MgO-SiO2 nanofibers from sepiolite minerals for reusable CO2 capture/release applications[J]. Applied Clay Science, 2018, 152: 267-275. [9] ZHANG Y, CHEN M K, LI G C, et al. Exfoliated vermiculite nanosheets supporting tetraethylenepentamine for CO2 capture[J]. Results in Materials, 2020, 7: 100102. [10] CHEN Y H, LU D L. Amine modification on kaolinites to enhance CO2 adsorption[J]. Journal of Colloid and Interface Science, 2014, 436: 47-51. [11] DENG L L, YUAN P, LIU D, et al. Effects of calcination and acid treatment on improving benzene adsorption performance of halloysite[J]. Applied Clay Science, 2019, 181: 105240. [12] CAI H H, BAO F, GAO J, et al. Preparation and characterization of novel carbon dioxide adsorbents based on polyethylenimine-modified Halloysite nanotubes[J]. Environmental Technology, 2015, 36(10): 1273-1280. [13] TAHERI F, GHAEMI A, MALEKI A, et al. High CO2 adsorption on amine-functionalized improved mesoporous silica nanotube as an eco-friendly nanocomposite[J]. Energy & Fuels, 2019, 33(6): 5384-5397. [14] JANA S, DAS S, GHOSH C, et al. Halloysite nanotubes capturing isotope selective atmospheric CO2[J]. Scientific Reports, 2015, 5: 8711. [15] GE L, LIN R J, WANG L, et al. Surface-etched halloysite nanotubes in mixed matrix membranes for efficient gas separation[J]. Separation and Purification Technology, 2017, 173: 63-71. [16] STEVENS L, WILLIAMS K, HAN W Y, et al. Preparation and CO2 adsorption of diamine modified montmorillonite via exfoliation grafting route[J]. Chemical Engineering Journal, 2013, 215/216: 699-708. [17] HELLER R, ZOBACK M. Adsorption of methane and carbon dioxide on gas shale and pure mineral samples[J]. Journal of Unconventional Oil and Gas Resources, 2014, 8: 14-24. [18] WU K, YE Q, WU R P, et al. Alkali metal-promoted aluminum-pillared montmorillonites: high-performance CO2 adsorbents[J]. Journal of Solid State Chemistry, 2020, 291: 121585. [19] 马 剑.咪唑改性坡缕石的制备及其对CO2的吸附研究[D].兰州:西北师范大学,2012. MA J. Study on preparation of imidazole modified palygorskite and adsorption of CO2[D]. Lanzhou: Northwest Normal University, 2012 (in Chinese). [20] 王文波,牟 斌,张俊平,等.凹凸棒石:从矿物材料到功能材料[J].中国科学:化学,2018,48(12):1432-1451. WANG W B, MOU B, ZHANG J P, et al. Attapulgite: from clay minerals to functional materials[J]. Scientia Sinica (Chimica), 2018, 48(12): 1432-1451 (in Chinese). [21] GÓMEZ-POZUELO G, SANZ-PÉREZ E S, ARENCIBIA A, et al. CO2 adsorption on amine-functionalized clays[J]. Microporous and Mesoporous Materials, 2019, 282: 38-47. [22] XIANG L, PAN Y C, ZENG G F, et al. Preparation of poly(ether-block-amide)/attapulgite mixed matrix membranes for CO2/N2 separation[J]. Journal of Membrane Science, 2016, 500: 66-75. [23] SURYA MURALI R, PRAVEEN KUMAR K, ISMAIL A F, et al. Nanosilica and H-mordenite incorporated poly(ether-block-amide)-1657 membranes for gaseous separations[J]. Microporous and Mesoporous Materials, 2014, 197: 291-298. [24] WANG G, GUO R X, WANG W J, et al. Natural porous nanorods used for high-efficient capture and chemical conversion of CO2[J]. Journal of CO2 Utilization, 2020, 42: 101303. [25] OUYANG J, ZHENG C H, GU W, et al. Textural properties determined CO2 capture of tetraethylenepentamine loaded SiO2 nanowires from α-sepiolite[J]. Chemical Engineering Journal, 2018, 337: 342-350. [26] ZHANG T P, LI M, NING P, et al. K2CO3 promoted novel Li4SiO4-based sorbents from sepiolite with high CO2 capture capacity under different CO2 partial pressures[J]. Chemical Engineering Journal, 2020, 380: 122515. [27] LIU L B, CHEN H B, SHIKO E, et al. Low-cost DETA impregnation of acid-activated sepiolite for CO2 capture[J]. Chemical Engineering Journal, 2018, 353: 940-948. [28] WALCZYK A, MICHALIK A, NAPRUSZEWSKA B D, et al. New insight into the phase transformation of sepiolite upon alkali activation: impact on composition, structure, texture, and catalytic/sorptive properties[J]. Applied Clay Science, 2020, 195: 105740. [29] IRANI M, FAN M H, ISMAIL H, et al. Modified nanosepiolite as an inexpensive support of tetraethylenepentamine for CO2 sorption[J]. Nano Energy, 2015, 11: 235-246. [30] DELGADO J A, UGUINA M A, SOTELO J L, et al. Carbon dioxide/methane separation by adsorption on sepiolite[J]. Journal of Natural Gas Chemistry, 2007, 16(3): 235-243. [31] VILARRASA-GARCÍA E, CECILIA J A, BASTOS-NETO M, et al. Microwave-assisted nitric acid treatment of sepiolite and functionalization with polyethylenimine applied to CO2 capture and CO2/N2 separation[J]. Applied Surface Science, 2017, 410: 315-325. [32] SANTOS S S G, SILVA H R M, DE SOUZA A G, et al. Acid-leached mixed vermiculites obtained by treatment with nitric acid[J]. Applied Clay Science, 2015, 104: 286-294. [33] STAWIŃSKI W, FREITAS O, CHMIELARZ L, et al. The influence of acid treatments over vermiculite based material as adsorbent for cationic textile dyestuffs[J]. Chemosphere, 2016, 153: 115-129. [34] ZHANG Y, YU F, LOUIS B, et al. Scalable synthesis of the lithium silicate-based high-temperature CO2 sorbent from inexpensive raw material vermiculite[J]. Chemical Engineering Journal, 2018, 349: 562-573. [35] ZHANG Y, GAO Y S, YU F, et al. Synthesis of hierarchical Li4SiO4 nanoparticles/flakers composite from vermiculite/MCM-41 hybrid with improved CO2 capture performance under different CO2 concentrations[J]. Chemical Engineering Journal, 2019, 371: 424-432. [36] JEON P R, CHOI J, YUN T S, et al. Sorption equilibrium and kinetics of CO2 on clay minerals from subcritical to supercritical conditions: CO2 sequestration at nanoscale interfaces[J]. Chemical Engineering Journal, 2014, 255: 705-715. [37] 陈心怡,程宏飞,赵炳新,等.高岭石基介孔复合材料的二氧化碳吸附性能[J].人工晶体学报,2021,50(9):1756-1764. CHEN X Y, CHENG H F, ZHAO B X, et al. Carbon dioxide adsorption property of kaolinite-based mesoporous composites[J]. Journal of Synthetic Crystals, 2021, 50(9): 1756-1764 (in Chinese). [38] OUYANG J, GU W, ZHANG Y, et al. CO2 capturing performances of millimeter scale beads made by tetraethylenepentamine loaded ultra-fine palygorskite powders from jet pulverization[J]. Chemical Engineering Journal, 2018, 341: 432-440. [39] 张 玉.不同硅源对Li4SiO4高温CO2吸附剂性能影响的研究[D].北京:北京林业大学,2019. ZHANG Y. Effect of different silicon sources on the high temperature CO2 sorbent capture performance of Li4SiO4[D]. Beijing: Beijing Forestry University, 2019 (in Chinese). [40] YANG N N, LIU S Y, YANG X N. Molecular simulation of preferential adsorption of CO2 over CH4 in Na-montmorillonite clay material[J]. Applied Surface Science, 2015, 356: 1262-1271. [41] LIU Y L, HOU J. Selective adsorption of CO2/CH4 mixture on clay-rich shale using molecular simulations[J]. Journal of CO2 Utilization, 2020, 39: 101143. [42] SCHAEF H T, LORING J S, GLEZAKOU V A, et al. Competitive sorption of CO2 and H2O in 2 ∶1 layer phyllosilicates[J]. Geochimica et Cosmochimica Acta, 2015, 161: 248-257. [43] 袁 梦.海泡石基固体胺吸附剂的制备及其CO2吸附性能的研究[D].长沙:湖南大学,2019. YUAN M. Preparation and CO2 adsorption performances of sepiolite-based solid amine adsorbents[D]. Changsha: Hunan University, 2019 (in Chinese). [44] 陈鸿伟,张 泽,孙 玮,等.介孔材料CO2吸附性能的研究进展[J].材料导报,2016,30(5):63-68. CHEN H W, ZHANG Z, SUN W, et al. Review on CO2 adsorption performance of mesoporous materials[J]. Materials Review, 2016, 30(5): 63-68 (in Chinese). [45] CHIANG Y C, JUANG R S. Surface modifications of carbonaceous materials for carbon dioxide adsorption: a review[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71: 214-234. [46] MARKEWITZ, ZHAO, RYSSEL, et al. Carbon capture for CO2 emission reduction in the cement industry in Germany[J]. Energies, 2019, 12(12): 2432. [47] 刘宛真.有机胺改性多孔材料对模拟沼气中CO2的吸附性能研究[D].哈尔滨:东北农业大学,2020. LIU W Z. Adsorption performance of porous materials modified by organic amine on adsorbing CO2 in simulated biogas[D]. Harbin: Northeast Agricultural University, 2020 (in Chinese). [48] 王洪冰,王芳芳.吸附法净化食品级二氧化碳杂质的技术研究[J].中外酒业·啤酒科技,2017(11):20-25. WANG H B, WANG F F. Research on purification technology of food grade carbon dioxide impurities by adsorption method[J]. Global Alcinfo, 2017(11): 20-25 (in Chinese). [49] RHIM J W, PARK H M, HA C S. Bio-nanocomposites for food packaging applications[J]. Progress in Polymer Science, 2013, 38(10/11): 1629-1652. |