硅酸盐通报 ›› 2021, Vol. 40 ›› Issue (6): 1832-1843.
孙凯利1,2, 吴翔强3, 蔺喜强1,2, 李国友1,2, 李新健1,2, 孙志鹏1,2
收稿日期:
2021-03-16
修回日期:
2021-05-05
出版日期:
2021-06-15
发布日期:
2021-07-08
作者简介:
孙凯利(1995—),男,工程师。主要从事高性能混凝土和功能建筑材料的研究。E-mail:1329383561@qq.com
基金资助:
SUN Kaili1,2, WU Xiangqiang3, LIN Xiqiang1,2, LI Guoyou1,2, LI Xinjian1,2, SUN Zhipeng1,2
Received:
2021-03-16
Revised:
2021-05-05
Online:
2021-06-15
Published:
2021-07-08
摘要: 混凝土3D打印是现代数字化制造的典型代表,因其智能化、个性化、绿色建造的工艺优势受到广泛关注。作为一种新型建造方式,3D打印为建筑业带来了颠覆性的影响,并对传统混凝土材料提出了全新的挑战。如何提升混凝土材料与3D打印技术的适应性,实现3D打印技术在建筑中的广泛应用是人们普遍关注的焦点。本文概述了混凝土3D打印技术的发展历程,系统论述了混凝土3D打印材料在流变性、可挤出性、可建造性以及力学性能方面的研究现状,同时,介绍了3D打印模板技术在装饰及异型构筑物上的典型应用,以期为混凝土3D打印的研究与未来工程发展提供一定的参考与借鉴。
中图分类号:
孙凯利, 吴翔强, 蔺喜强, 李国友, 李新健, 孙志鹏. 混凝土3D打印材料及3D打印模板技术应用进展[J]. 硅酸盐通报, 2021, 40(6): 1832-1843.
SUN Kaili, WU Xiangqiang, LIN Xiqiang, LI Guoyou, LI Xinjian, SUN Zhipeng. Research Progress on Concrete Materials for 3D Printing and 3D Printing Formwork Technology[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1832-1843.
[1] BUCHER R, DIEDERICH P, ESCADEILLAS G, et al. Service life of metakaolin-based concrete exposed to carbonation: comparison with blended cement containing fly ash, blast furnace slag and limestone filler[J]. Cement and Concrete Research, 2017, 99: 18-29. [2] DANG V Q, OGAWA Y, BUI P T, et al. Effects of chloride ions on the durability and mechanical properties of sea sand concrete incorporating supplementary cementitious materials under an accelerated carbonation condition[J]. Construction and Building Materials, 2021, 274: 122016. [3] SAILLIO M, BAROGHEL-BOUNY V, PRADELLE S, et al. Effect of supplementary cementitious materials on carbonation of cement pastes[J]. Cement and Concrete Research, 2021, 142: 106358. [4] 杰里米·里夫金,张一萌.第三次产业革命[J].国际研究参考,2013(6):31-34. JIELIMI L, ZHANG Y M. The third industrial revolution[J]. International Study Reference, 2013(6): 31-34 (in Chinese). [5] 丁烈云,徐 捷,覃亚伟.建筑3D打印数字建造技术研究应用综述[J].土木工程与管理学报,2015,32(3):1-10. DING L Y, XU J, QIN Y W. Research and application review of the digital construction technology of 3D printing for construction[J]. Journal of Civil Engineering and Management, 2015, 32(3): 1-10 (in Chinese). [6] 肖绪文,马荣全,田 伟.3D打印建造研发现状及发展战略[J].施工技术,2017,46(1):5-8. XIAO X W, MA R Q, TIAN W. State and development strategy for 3D printing construction technology[J]. Construction Technology, 2017, 46(1): 5-8 (in Chinese). [7] 陈 哲.多功能多材料水凝胶的3D打印及其力学建模[D].杭州:浙江大学,2020:1-23. CHEN Z. 3D printing of multi-functional, multi-material hydrogels and their mechanical models[D]. Hangzhou: Zhejiang University, 2020: 1-23 (in Chinese). [8] 张 超,邓智聪,侯泽宇,等.混凝土3D打印研究进展[J].工业建筑,2020,50(8):16-21. ZHANG C, DENG Z C, HOU Z Y, et al. Research progress of 3D printing for concrete[J]. Industrial Construction, 2020, 50(8): 16-21 (in Chinese). [9] 张洪萍.3D打印用水泥基活性粉末混凝土制备及性能研究[D].太原:中北大学,2020:1-18. ZHANG H P. Research on preparation and performance of cement-based reactive powder concrete for 3D printing[D]. Taiyuan: North University of China, 2020: 1-18 (in Chinese). [10] LLATAS C. A model for quantifying construction waste in projects according to the European waste list[J]. Waste Management, 2011, 31(6): 1261-1276. [11] LIU Z, OSMANI M, DEMIAN P, et al. A BIM-aided construction waste minimisation framework[J]. Automation in Construction, 2015, 59: 1-23. [12] HOLT C, EDWARDS L, KEYTE L, et al. Construction 3D printing[M]//3D Concrete Printing Technology. Amsterdam: Elsevier, 2019: 349-370. [13] MALAEB Z, HACHEM H, TOURBAH A, et al. 3D concrete printing: machine and mix design[J]. International Journal of Civil Engineering Technology, 2015, 6(6): 14-22. [14] ASTM International. Standard terminology for additive manufacturing technologies: standard A.F2792[S]. West Conshohocken: ASTM International, 2013. [15] PEGNA J. Exploratory investigation of solid freeform construction[J]. Automation in Construction, 1997, 5(5): 427-437. [16] KHOSHNEVIS B, HWANG D, YAO K T, et al. Mega-scale fabrication by contour crafting[J]. International Journal of Industrial and Systems Engineering, 2006, 1(3): 301. [17] KHOSHNEVIS B. Automated construction by contour crafting-related robotics and information technologies[J]. Automation in Construction, 2004, 13(1): 5-19. [18] CESARETTI G, DINI E, DE KESTELIER X, et al. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology[J]. Acta Astronautica, 2014, 93: 430-450. [19] LIM S, LE T, WEBSTER J, et al. Fabricating construction components using layer manufacturing technology[C]//Proceedings of the Global Innovation in Construction Conference (GICC09). Loughborough University, Leicestershire, UK, 2009: 13-16. [20] 张大旺,王栋民.3D打印混凝土材料及混凝土建筑技术进展[J].硅酸盐通报,2015,34(6):1583-1588. ZHANG D W, WANG D M. Progress of 3D print of concrete materials and concrete construction technology[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(6): 1583-1588 (in Chinese). [21] 刘 智,赵永强.3D打印技术设备的现状与发展[J].锻压装备与制造技术,2020,55(6):7-13. LIU Z, ZHAO Y Q. The current situation and development of 3D printing technology equipment[J]. China Metalforming Equipment & Manufacturing Technology, 2020, 55(6): 7-13 (in Chinese). [22] LU B, WENG Y W, LI M Y, et al. A systematical review of 3D printable cementitious materials[J]. Construction and Building Materials, 2019, 207: 477-490. [23] HOU S D, DUAN Z H, XIAO J Z, et al. A review of 3D printed concrete: performance requirements, testing measurements and mix design[J]. Construction and Building Materials, 2021, 273: 121745. [24] KRISTOMBU BADUGE S, NAVARATNAM S, ABU-ZIDAN Y, et al. Improving performance of additive manufactured (3D printed) concrete: a review on material mix design, processing, interlayer bonding, and reinforcing methods[J]. Structures, 2021, 29: 1597-1609. [25] REITER L, WANGLER T, ROUSSEL N, et al. The role of early age structural build-up in digital fabrication with concrete[J]. Cement and Concrete Research, 2018, 112: 86-95. [26] NERELLA V N, BEIGH M A B, FATAEI S, et al. Strain-based approach for measuring structural build-up of cement pastes in the context of digital construction[J]. Cement and Concrete Research, 2019, 115: 530-544. [27] SOUZA M T, FERREIRA I M, GUZI DE MORAES E, et al. 3D printed concrete for large-scale buildings: an overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects[J]. Journal of Building Engineering, 2020, 32: 101833. [28] ROUSSEL N, OVARLEZ G, GARRAULT S, et al. The origins of thixotropy of fresh cement pastes[J]. Cement and Concrete Research, 2012, 42(1): 148-157. [29] LE T T, AUSTIN S A, LIM S, et al. Mix design and fresh properties for high-performance printing concrete[J]. Materials and Structures, 2012, 45(8): 1221-1232. [30] LE T T, AUSTIN S A, LIM S, et al. Hardened properties of high-performance printing concrete[J]. Cement and Concrete Research, 2012, 42(3): 558-566. [31] MA G W, LI Z J, WANG L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing[J]. Construction and Building Materials, 2018, 162: 613-627. [32] CHEN Y, CHAVES FIGUEIREDO S, YALÇINKAYA Ç, et al. The effect of viscosity-modifying admixture on the extrudability of limestone and calcined clay-based cementitious material for extrusion-based 3D concrete printing[J]. Materials, 2019, 12(9): 1374. [33] KHALIL N, AOUAD G, EL CHEIKH K, et al. Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars[J]. Construction and Building Materials, 2017, 157: 382-391. [34] EL CHEIKH K, RÉMOND S, KHALIL N, et al. Numerical and experimental studies of aggregate blocking in mortar extrusion[J]. Construction and Building Materials, 2017, 145: 452-463. [35] WENG Y W, LI M Y, TAN M J, et al. Design 3D printing cementitious materials via Fuller Thompson theory and Marson-Percy model[J]. Construction and Building Materials, 2018, 163: 600-610. [36] NERELLA V N, NÄTHER M, IQBAL A, et al. Inline quantification of extrudability of cementitious materials for digital construction[J]. Cement and Concrete Composites, 2019, 95: 260-270. [37] TAY Y W D, LI M Y, TAN M J. Effect of printing parameters in 3D concrete printing: printing region and support structures[J]. Journal of Materials Processing Technology, 2019, 271: 261-270. [38] LIU Z X, LI M Y, WENG Y W, et al. Modelling and parameter optimization for filament deformation in 3D cementitious material printing using support vector machine[J]. Composites Part B: Engineering, 2020, 193: 108018. [39] BUSWELL R A, LEAL DE SILVA W R, JONES S Z, et al. 3D printing using concrete extrusion: a roadmap for research[J]. Cement and Concrete Research, 2018, 112: 37-49. [40] WOLFS R J M, BOS F P, SALET T A M. Early age mechanical behaviour of 3D printed concrete: numerical modelling and experimental testing[J]. Cement and Concrete Research, 2018, 106: 103-116. [41] PANDA B, LIM J H, TAN M J. Mechanical properties and deformation behaviour of early age concrete in the context of digital construction[J]. Composites Part B: Engineering, 2019, 165: 563-571. [42] YUAN Q, LI Z M, ZHOU D J, et al. A feasible method for measuring the buildability of fresh 3D printing mortar[J]. Construction and Building Materials, 2019, 227: 116600. [43] CASAGRANDE L, ESPOSITO L, MENNA C, et al. Effect of testing procedures on buildability properties of 3D-printable concrete[J]. Construction and Building Materials, 2020, 245: 118286. [44] ROUSSEL N. Rheological requirements for printable concretes[J]. Cement and Concrete Research, 2018, 112: 76-85. [45] PERROT A, RANGEARD D, PIERRE A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques[J]. Materials and Structures, 2016, 49(4): 1213-1220. [46] KAZEMIAN A, YUAN X, COCHRAN E, et al. Cementitious materials for construction-scale 3D printing: laboratory testing of fresh printing mixture[J]. Construction and Building Materials, 2017, 145: 639-647. [47] SIDDIKA A, MAMUN M A A, FERDOUS W, et al. 3D-printed concrete: applications, performance, and challenges[J]. Journal of Sustainable Cement-Based Materials, 2019, 9(3): 127-164. [48] LECOMPTE T, PERROT A. Non-linear modeling of yield stress increase due to SCC structural build-up at rest[J]. Cement and Concrete Research, 2017, 92: 92-97. [49] VOIGT T, MALONN T, SHAH S P. Green and early age compressive strength of extruded cement mortar monitored with compression tests and ultrasonic techniques[J]. Cement and Concrete Research, 2006, 36(5): 858-867. [50] SUIKER A S J. Mechanical performance of wall structures in 3D printing processes: theory, design tools and experiments[J]. International Journal of Mechanical Sciences, 2018, 137: 145-170. [51] WOLFS R J M, BOS F P, SALET T A M. Correlation between destructive compression tests and non-destructive ultrasonic measurements on early age 3D printed concrete[J]. Construction and Building Materials, 2018, 181: 447-454. [52] DING T, XIAO J Z, QIN F, et al. Mechanical behavior of 3D printed mortar with recycled sand at early ages[J]. Construction and Building Materials, 2020, 248: 118654. [53] PANDA B, NOOR MOHAMED N A, PAUL S C, et al. The effect of material fresh properties and process parameters on buildability and interlayer adhesion of 3D printed concrete[J]. Materials, 2019, 12(13): 2149. [54] WOLFS R J M, BOS F P, SALET T A M. Hardened properties of 3D printed concrete: the influence of process parameters on interlayer adhesion[J]. Cement and Concrete Research, 2019, 119: 132-140. [55] PUTTEN J, SCHUTTER G, TITTELBOOM K. The effect of print parameters on the (micro)structure of 3D printed cementitious materials[C]//First RILEM International Conference on Concrete and Digital Fabrication-Digital Concrete 2018. Switzerland: Springer, Cham. https://doi.org/10.1007/978-3-319-99519-9_22. [56] MOINI M, OLEK J, MAGEE B, et al. Additive manufacturing and characterization of architectured cement-based materials via X-ray micro-computed tomography[C]//First RILEM International Conference on Concrete and Digital Fabrication-Digital Concrete 2018. Switzerland: Springer, Cham. https://doi.org/10.1007/978-3-319-99519-9_16. [57] PANDA B, PAUL S C, MOHAMED N A N, et al. Measurement of tensile bond strength of 3D printed geopolymer mortar[J]. Measurement, 2018, 113: 108-116. [58] NERELLA V N, HEMPEL S, MECHTCHERINE V. Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion-based 3D-printing[J]. Construction and Building Materials, 2019, 205: 586-601. [59] WANG L, TIAN Z H, MA G W, et al. Interlayer bonding improvement of 3D printed concrete with polymer modified mortar: experiments and molecular dynamics studies[J]. Cement and Concrete Composites, 2020, 110: 103571. [60] HOSSEINI E, ZAKERTABRIZI M, KORAYEM A H, et al. A novel method to enhance the interlayer bonding of 3D printing concrete: an experimental and computational investigation[J]. Cement and Concrete Composites, 2019, 99: 112-119. [61] MARCHMENT T, SANJAYAN J, XIA M. Method of enhancing interlayer bond strength in construction scale 3D printing with mortar by effective bond area amplification[J]. Materials & Design, 2019, 169: 107684. [62] MA G W, SALMAN N M, WANG L, et al. A novel additive mortar leveraging internal curing for enhancing interlayer bonding of cementitious composite for 3D printing[J]. Construction and Building Materials, 2020, 244: 118305. [63] MECHTCHERINE V, NERELLA V N, WILL F, et al. Large-scale digital concrete construction-CONPrint3D concept for on-site, monolithic 3D-printing[J]. Automation in Construction, 2019, 107: 102933. [64] JI G C, DING T, XIAO J Z, et al. A 3D printed ready-mixed concrete power distribution substation: materials and construction technology[J]. Materials, 2019, 12(9): 1540. [65] HAMBACH M, VOLKMER D. Properties of 3D-printed fiber-reinforced Portland cement paste[J]. Cement and Concrete Composites, 2017, 79: 62-70. [66] ARUNOTHAYAN A R, NEMATOLLAHI B, RANADE R, et al. Development of 3D-printable ultra-high performance fiber-reinforced concrete for digital construction[J]. Construction and Building Materials, 2020, 257: 119546. [67] YE J H, CUI C, YU J T, et al. Effect of polyethylene fiber content on workability and mechanical-anisotropic properties of 3D printed ultra-high ductile concrete[J]. Construction and Building Materials, 2021, 281: 122586. [68] 魏 玮,杨 涛.高流动性3D打印水泥基材料制备及性能研究[J].混凝土与水泥制品,2021(2):8-12. WEI W, YANG T. Study on preparation and properties of high fluidity 3D printed cement-based materials[J]. China Concrete and Cement Products, 2021(2): 8-12 (in Chinese). [69] KONDEPUDI K, SUBRAMANIAM K V L. Formulation of alkali-activated fly ash-slag binders for 3D concrete printing[J]. Cement and Concrete Composites, 2021, 119: 103983. [70] SUN C C, XIANG J C, XU M X, et al. 3D extrusion free forming of geopolymer composites: materials modification and processing optimization[J]. Journal of Cleaner Production, 2020, 258: 120986. [71] PANDA B, RUAN S Q, UNLUER C, et al. Investigation of the properties of alkali-activated slag mixes involving the use of nanoclay and nucleation seeds for 3D printing[J]. Composites Part B: Engineering, 2020, 186: 107826. [72] MUTHUKRISHNAN S, RAMAKRISHNAN S, SANJAYAN J. Effect of microwave heating on interlayer bonding and buildability of geopolymer 3D concrete printing[J]. Construction and Building Materials, 2020, 265: 120786. [73] MUTHUKRISHNAN S, RAMAKRISHNAN S, SANJAYAN J. Effect of alkali reactions on the rheology of one-part 3D printable geopolymer concrete[J]. Cement and Concrete Composites, 2021, 116: 103899. [74] 霍 亮,蔺喜强,李小龙,等.基于沙漠砂的3D打印浆体性能研究及应用[J].混凝土,2020(12):108-110+117. HUO L, LIN X Q, LI X L, et al. Research and application of performance based on desert sand 3D printing mortar[J]. Concrete, 2020(12): 108-110+117 (in Chinese). [75] LI X J, ZHANG N, YUAN J B, et al. Preparation and microstructural characterization of a novel 3D printable building material composed of copper tailings and iron tailings[J]. Construction and Building Materials, 2020, 249: 118779. [76] SOLTAN D G, LI V C. A self-reinforced cementitious composite for building-scale 3D printing[J]. Cement and Concrete Composites, 2018, 90: 1-13. [77] LI V C, BOS F P, YU K Q, et al. On the emergence of 3D printable engineered, strain hardening cementitious composites (ECC/SHCC)[J]. Cement and Concrete Research, 2020, 132: 106038. [78] ZHANG Y, ZHANG Y S, LIU G J, et al. Fresh properties of a novel 3D printing concrete ink[J]. Construction and Building Materials, 2018, 174: 263-271. [79] YE J H, CUI C, YU J T, et al. Fresh and anisotropic-mechanical properties of 3D printable ultra-high ductile concrete with crumb rubber[J]. Composites Part B: Engineering, 2021, 211: 108639. [80] ARUNOTHAYAN A R, NEMATOLLAHI B, RANADE R, et al. Fiber orientation effects on ultra-high performance concrete formed by 3D printing[J]. Cement and Concrete Research, 2021, 143: 106384. [81] BUSWELL R A, DA SILVA W R L, BOS F P, et al. A process classification framework for defining and describing digital fabrication with concrete[J]. Cement and Concrete Research, 2020, 134: 106068. [82] NEMATOLLAHI B, XIA M, SANJAYAN J. Current progress of 3D concrete printing technologies[C]//Proceedings of the 34th International Symposium on Automation and Robotics in Construction (ISARC). June 28-July 1, 2017. Taipei, Taiwan, China. Tribun EU, s.r.o., Brno, 2017. |
[1] | 焦敏. 氧化石墨烯对新拌水泥浆体流变性的影响[J]. 硅酸盐通报, 2021, 40(7): 2159-2164. |
[2] | 邢浩然, 毛念东, 杨欣然, 周知, 黄维. 钢管橡胶集料混凝土短柱轴压性能的试验研究[J]. 硅酸盐通报, 2021, 40(7): 2191-2199. |
[3] | 张波, 杨勇, 夏泽宇. 预应力钢带加固混凝土圆柱轴压性能试验[J]. 硅酸盐通报, 2021, 40(7): 2200-2208. |
[4] | 刘芳, 熊锐, 钟勇强. 表面涂层对混凝土吸水性能的影响[J]. 硅酸盐通报, 2021, 40(7): 2209-2214. |
[5] | 向君正, 宋慧, 冷梦辉, 桂发亮. 透水混凝土冻融剥蚀成因分析[J]. 硅酸盐通报, 2021, 40(7): 2215-2224. |
[6] | 张广泰, 耿天娇, 鲁海波, 王明阳, 李雪藩. 冻融循环下沙漠砂纤维混凝土损伤模型研究[J]. 硅酸盐通报, 2021, 40(7): 2225-2231. |
[7] | 段承刚, 孙永涛. 复掺高性能矿物掺合料对高强机制砂混凝土性能的影响[J]. 硅酸盐通报, 2021, 40(7): 2296-2305. |
[8] | 范小春, 张雯静, 梁天福, 陈凯风. 回收轮胎钢纤维再生骨料混凝土基本力学性能试验研究[J]. 硅酸盐通报, 2021, 40(7): 2331-2340. |
[9] | 黄开林, 李书进, 臧旭航. 不同类型再生细骨料对保温混凝土力学性能的影响[J]. 硅酸盐通报, 2021, 40(7): 2341-2347. |
[10] | 李宝玉. 石墨烯/聚乙烯复合改性沥青胶结料的流变性能研究[J]. 硅酸盐通报, 2021, 40(7): 2461-2468. |
[11] | 张超, 邓智聪, 马蕾, 刘超, 陈宇宁, 汪智斌, 贾子健, 王香港, 贾鲁涛, 陈春, 孙正明, 张亚梅. 3D打印混凝土研究进展及其应用[J]. 硅酸盐通报, 2021, 40(6): 1769-1795. |
[12] | 张翼, 朱艳梅, 任强, 蒋正武. 3D打印建筑技术及其水泥基材料研究进展评述[J]. 硅酸盐通报, 2021, 40(6): 1796-1807. |
[13] | 刘俊力, 任杰, Jonathan Phuong Tran. 3D打印混凝土技术在澳大利亚的最近研究进展[J]. 硅酸盐通报, 2021, 40(6): 1808-1813. |
[14] | 王里, 李丹利, 叶珂含, 关景元, 冯舵. 水泥基复合材料3D可打印性的量化、优化及标准化[J]. 硅酸盐通报, 2021, 40(6): 1814-1820. |
[15] | 焦泽坤, 王栋民, 王启宝, 黄天勇, 王吉祥, 李林坤. 3D打印混凝土材料可打印性的影响因素与测试方法[J]. 硅酸盐通报, 2021, 40(6): 1821-1831. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||