硅酸盐通报 ›› 2021, Vol. 40 ›› Issue (6): 1844-1854.
王瑜玲, 王春福, 张飞燕
收稿日期:
2021-03-15
修回日期:
2021-04-08
出版日期:
2021-06-15
发布日期:
2021-07-08
作者简介:
王瑜玲(1983—),女,副教授。主要从事绿色建筑、新型水泥基材料的应用研究。E-mail:19071355@qq.com
基金资助:
WANG Yuling, WANG Chunfu, ZHANG Feiyan
Received:
2021-03-15
Revised:
2021-04-08
Online:
2021-06-15
Published:
2021-07-08
摘要: 3D打印混凝土特殊的施工工艺对混凝土材料提出了新的要求。从混凝土外加剂出发,合理选择外加剂的种类及用量可以有效调节3D打印混凝土的流变性、凝结特性、强度及耐久性,保证3D打印混凝土的可建造性及使用性。本文以3D打印混凝土的性能要求为基础,分析可以改善3D打印混凝土相关性能潜在外加剂的作用机理及使用情况,为3D打印混凝土在外加剂的选择上提供理论建议,并提出3D打印混凝土外加剂未来的发展方向。
中图分类号:
王瑜玲, 王春福, 张飞燕. 3D打印混凝土性能要求及相关外加剂研究进展[J]. 硅酸盐通报, 2021, 40(6): 1844-1854.
WANG Yuling, WANG Chunfu, ZHANG Feiyan. Review on Performance Requirements and Related Admixtures of 3D Printed Concrete[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1844-1854.
[1] 蒲以松,王宝奇,张连贵.金属3D打印技术的研究[J].表面技术,2018,47(3):78-84. PU Y S, WANG B Q, ZHANG L G. Metal 3D printing technology[J]. Surface Technology, 2018, 47(3): 78-84 (in Chinese). [2] HONG Y. From theory to practical of 3D printing building[J]. Frontiers of Science, 2014, 6: 58-62. [3] 常西栋,李维红,王 乾.3D打印混凝土材料及性能测试研究进展[J].硅酸盐通报,2019,38(8):2435-2441. CHANG X D, LI W H, WANG Q. Research progress of 3D printed concrete materials and its performance test[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(8): 2435-2441 (in Chinese). [4] 孙振平,孙远松,庞 敏,等.适合3D打印施工的超高性能混凝土研究[J].新型建筑材料,2021,48(1):1-5. SUN Z P, SUN Y S, PANG M, et al. Preparation of ultra high performance concrete for 3D printing construction[J]. New Building Materials, 2021, 48(1): 1-5 (in Chinese). [5] 雷 斌,马 勇,熊悦辰,等.3D打印混凝土材料制备方法研究[J].混凝土,2018(2):145-149+153. LEI B, MA Y, XIONG Y C, et al. Study on preparation method of 3D printing concrete material[J]. Concrete, 2018(2): 145-149+153 (in Chinese). [6] 张大旺,王栋民.3D打印混凝土材料及混凝土建筑技术进展[J].硅酸盐通报,2015,34(6):1583-1588. ZHANG D W, WANG D M. Progress of 3D print of concrete materials and concrete construction technology[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(6): 1583-1588 (in Chinese). [7] 程碧华,汪 霄,潘 婷.3D打印技术在建筑领域的应用及问题探析[J].科技管理研究,2018,38(7):172-177. CHENG B H, WANG X, PAN T. Application and analysis of 3D printing technology in architecture field[J]. Science and Technology Management Research, 2018, 38(7): 172-177 (in Chinese). [8] 耿会岭,杨 政,袁雅贤.3D打印在建筑领域的应用[J].混凝土与水泥制品,2019(7):34-38+83. GENG H L, YANG Z, YUAN Y X. Application for 3D printing in the field of architecture[J]. China Concrete and Cement Products, 2019(7): 34-38+83 (in Chinese). [9] 马敬畏,蒋正武,苏宇峰.3D打印混凝土技术的发展与展望[J].混凝土世界,2014(7):41-46. MA J W, JIANG Z W, SU Y F. Development and prospect of 3D printed concrete technology[J]. Building Decoration Materials World, 2014(7): 41-46 (in Chinese). [10] LE T T, AUSTIN S A, LIM S, et al. Mix design and fresh properties for high-performance printing concrete[J]. Materials and Structures, 2012, 45(8): 1221-1232. [11] 齐 甦,李庆远,崔小鹏,等.3D打印混凝土材料的研究现状与展望[J].混凝土,2021(1):36-39. QI K, LI Q Y, CUI X P, et al. Research status and prospect of 3D printed concrete materials[J]. Concrete, 2021(1): 36-39 (in Chinese). [12] 田 伟,肖绪文,苗冬梅.建筑3D打印发展现状及展望[J].施工技术,2015,44(17):79-83. TIAN W, XIAO X W, MIAO D M. Current situation and prospect of 3D printing technology in building field[J]. Construction Technology, 2015, 44(17): 79-83 (in Chinese). [13] 雷 波,解文峰.一种3D打印混凝土材料的试验研究[J].新型建筑材料,2020,47(2):72-76. LEI B, XIE W F. Expevimental research on a 3D printing concrete[J]. New Building Materials, 2020, 47(2): 72-76 (in Chinese). [14] 江 洪,康学萍.3D打印技术的发展分析[J].新材料产业,2013(10):30-35. JIANG H, KANG X P. Development analysis of 3D printed technology[J]. Advanced Materials Industry, 2013(10): 30-35 (in Chinese). [15] 雷 斌,马 勇,熊悦辰,等.3D打印混凝土可塑造性能的评价方法研究[J].硅酸盐通报,2017,36(10):3278-3284. LEI B, MA Y, XIONG Y C, et al. Evaluation method of shaping performance of 3D printing concrete material[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(10): 3278-3284 (in Chinese). [16] DE SCHUTTER G, LESAGE K, MECHTCHERINE V, et al. Vision of 3D printing with concrete: technical, economic and environmental potentials[J]. Cement and Concrete Research, 2018, 112: 25-36. [17] ROUSSEL N. A theoretical frame to study stability of fresh concrete[J]. Materials and Structures, 2006, 39(1): 81-91. [18] PERROT A, RANGEARD D, PIERRE A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques[J]. Materials and Structures, 2016, 49(4): 1213-1220. [19] ROUSSEL N. Rheological requirements for printable concretes[J]. Cement and Concrete Research, 2018, 112: 76-85. [20] MARCHON D, KAWASHIMA S, BESSAIES-BEY H, et al. Hydration and rheology control of concrete for digital fabrication: potential admixtures and cement chemistry[J]. Cement and Concrete Research, 2018, 112: 96-110. [21] FEYS D, KHAYAT K H, KHATIB R. How do concrete rheology, tribology, flow rate and pipe radius influence pumping pressure?[J]. Cement and Concrete Composites, 2016, 66: 38-46. [22] 薛 龙.3D打印水泥基材料的制备与性能研究[D].北京:北京工业大学,2017. XUE L. Preparation and properties of cement based materials for 3D printing technology[D]. Beijing: Beijing University of Technology, 2017 (in Chinese). [23] 刘 东,袁文韬,兰 聪,等.水泥基3D打印材料组分对打印效果的影响[J].新型建筑材料,2020,47(6):14-18. LIU D, YUAN W T, LAN C, et al. Effect of cement based 3D printing material composition on printing effect[J]. New Building Materials, 2020, 47(6): 14-18 (in Chinese). [24] LOOTENS D, JOUSSET P, MARTINIE L, et al. Yield stress during setting of cement pastes from penetration tests[J]. Cement and Concrete Research, 2009, 39(5): 401-408. [25] KEITA E, BESSAIES-BEY H, ZUO W Q, et al. Weak bond strength between successive layers in extrusion-based additive manufacturing: measurement and physical origin[J]. Cement and Concrete Research, 2019, 123: 105787. [26] 李福平.3D打印混凝土结构及原材料初探[J].商品混凝土,2015(11):32-33. LI F P. Preliminary study on the structure and raw materials of 3D printing concrete[J]. Ready-Mixed Concrete, 2015(11): 32-33 (in Chinese). [27] DE BEM D H, LIMA D P B, MEDEIROS-JUNIOR R A. Effect of chemical admixtures on concrete’s electrical resistivity[J]. International Journal of Building Pathology and Adaptation, 2018, 36(2): 174-187. [28] DE AÏTCIN P C. Cements of yesterday and today: concrete of tomorrow[J]. Cement and Concrete Research, 2000, 30(9): 1349-1359. [29] 周 颖,郭建兵,何 敏,等.木质素化学与聚合物应用现状[J].塑料助剂,2020(4):14-20. ZHOU Y, GUO J B, HE M, et al. Lignin chemistry and its application to polymers: status and prospects[J]. Plastics Additives, 2020(4): 14-20 (in Chinese). [30] 王明岳.木质素改良高液限黏土的路用性能研究[D].济南:山东建筑大学,2020. WANG M Y. Study on road performance of high liquid limit clay improved by lignin[D]. Jinan: Shandong Jianzhu University, 2020 (in Chinese). [31] 缪昌文.高性能混凝土外加剂[M].北京:化学工业出版社,2008. MIAO C W. High performance admixture for concrete[M]. Beijing: Chemical Industry Press, 2008 (in Chinese). [32] 刘 鹏.萘系高效减水剂清洁生产技术研究[D].西安:西安建筑科技大学,2012. LIU P. The research on the clean production technique of naphthalene series superplasticizer[D]. Xi’an: Xi’an University of Architecture and Technology, 2012 (in Chinese). [33] ROUSSEL N, LEMAÎTRE A, FLATT R J, et al. Steady state flow of cement suspensions: a micromechanical state of the art[J]. Cement and Concrete Research, 2010, 40(1): 77-84. [34] 陶 然.萘系和聚羧酸系减水剂环境协调性评价[D].北京:北京工业大学,2018. TAO R. The environmental coordination assessment of naphthalene based and polycarboxylic acid superplasticizer[D]. Beijing: Beijing University of Technology, 2018 (in Chinese). [35] KONG H J, BIKE S G, LI V C. Effects of a strong polyelectrolyte on the rheological properties of concentrated cementitious suspensions[J]. Cement and Concrete Research, 2006, 36(5): 851-857. [36] 王恒昌,房满满,陈春泉,等.萘系与聚羧酸系减水剂对水泥基材料性能的影响[J].混凝土,2009(3):66-69. WANG H C, FANG M M, CHEN C Q, et al. Effect of PC and NSF water reducers on the property of cement based materials[J]. Concrete, 2009(3): 66-69 (in Chinese). [37] 高 磊,罗 易,许蒋鹏,等.桩基工程3D打印混凝土材料工程性质研究[J].河北工程大学学报(自然科学版),2018,35(4):21-24+29. GAO L, LUO Y, XU J P, et al. Study on engineering properties of 3D printing concrete materials for pile foundation engineering[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2018, 35(4): 21-24+29 (in Chinese). [38] 孙 娜.两性混凝土超塑化剂的合成与性能研究[D].济南:济南大学,2011. SUN N. Synthesis and performance of amphoteric superplasticizer used in concrete[D]. Jinan: University of Jinan, 2011 (in Chinese). [39] 马保国,杨 虎,谭洪波,等.水泥和黏土矿物对不同减水剂的吸附特性[J].硅酸盐学报,2013,41(3):328-333. MA B G, YANG H, TAN H B, et al. Adsorption characteristics of different superplasticizers on cement and clay minerals[J]. Journal of the Chinese Ceramic Society, 2013, 41(3): 328-333 (in Chinese). [40] MARCHON D, JUILLAND P, GALLUCCI E, et al. Molecular and submolecular scale effects of comb-copolymers on tri-calcium silicate reactivity: toward molecular design[J]. Journal of the American Ceramic Society, 2017, 100(3): 817-841. [41] 彭 毅.增稠剂与聚羧酸减水剂的协同作用对水泥浆体流变性的影响[D].武汉:武汉理工大学,2019. PENG Y. Effect of viscosity-enhancing admixture and polycarboxylate superplasticizer on rheological properties of cement paste[D]. Wuhan: Wuhan University of Technology, 2019 (in Chinese). [42] BESSAIES-BEY H. Polymères et propriétés rhéologiques d’une pâte de ciment: une approche physique générique[D]. Paris: UNIVERSIT PARIS-EST, 2015. [43] BRUMAUD C, BAUMANN R, SCHMITZ M, et al. Cellulose ethers and yield stress of cement pastes[J]. Cement and Concrete Research, 2014, 55: 14-21. [44] PATURAL L, MARCHAL P, GOVIN A, et al. Cellulose ethers influence on water retention and consistency in cement-based mortars[J]. Cement and Concrete Research, 2011, 41(1): 46-55. [45] TADROS T F. Dispersion of powders in liquids and stabilization of suspensions[M]. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. [46] L SCHMITZ,C-J HACKER,张 量.纤维素醚在水泥基干拌砂浆产品中的应用[J].新型建筑材料,2006,33(7):45-48. SCHMITZ L, HACKER C-J, ZHANG L. Application of cellulose ether in cement-based dry-mixed mortar products[J]. New Building Materials, 2006, 33(7): 45-48 (in Chinese). [47] 张承志,王爱勤,董芹芹,等.乳胶粉与纤维素醚对硬化水泥石干缩行为影响的差异与相互作用[C]//第二届全国商品砂浆学术交流会论文集.开封,2007:172-178. ZHANG C Z, WANG A Q, DONG Q Q, et al. Difference and interaction between latex powder and cellulose ether on dry shrinkage behavior of hardened cement stone[C]//Chinese Silicate Society. Proceedings of the Second National Symposium on Commercial Mortar. Kaifeng, 2007: 172-178 (in Chinese). [48] 詹镇峰,李从波,陈文钊.纤维素醚的结构特点及对砂浆性能的影响[J].混凝土,2009(10):110-112. ZHAN Z F, LI C B, CHEN W Z. Structure characteristic of cellulose ethers and its effect on mortar performances[J]. Concrete, 2009(10): 110-112 (in Chinese). [49] PATURAL L, KORB J P, GOVIN A, et al. Nuclear magnetic relaxation dispersion investigations of water retention mechanism by cellulose ethers in mortars[J]. Cement and Concrete Research, 2012, 42(10): 1371-1378. [50] POURCHEZ J, GROSSEAU P, RUOT B. Changes in C3S hydration in the presence of cellulose ethers[J]. Cement and Concrete Research, 2010, 40(2): 179-188. [51] BESSAIES-BEY H, BAUMANN R, SCHMITZ M, et al. Effect of polyacrylamide on rheology of fresh cement pastes[J]. Cement and Concrete Research, 2015, 76: 98-106. [52] 张玉琳.温轮胶对水泥熟料单矿水化行为的影响[D].武汉:武汉理工大学,2015. ZHANG Y L. Influence of welan gum on cement clinker phases hydration[D]. Wuhan: Wuhan University of Technology, 2015 (in Chinese). [53] BRUMAUD C, BESSAIES-BEY H, MOHLER C, et al. Cellulose ethers and water retention[J]. Cement and Concrete Research, 2013, 53: 176-184. [54] 钟丽娜,方云辉,柯余良,等.混凝土黏度分子质量改性剂流变参数与应用性能研究[J].新型建筑材料,2019,46(12):69-72. ZHONG L N, FANG Y H, KE Y L, et al. Study on rheological parameters and application performance of viscosity modifying admixture for concrete[J]. New Building Materials, 2019, 46(12): 69-72 (in Chinese). [55] 苏 胜.掺生物胶自密实混凝土流动性的试验研究[J].混凝土,2008(3):75-76+83. SU S. Fluidity of self-compacting concrete with biopolymers[J]. Concrete, 2008(3): 75-76+83 (in Chinese). [56] VAN OLPHEN H, HSU P H. An introduction to clay colloid chemistry[J]. Soil Science, 1978, 126(1): 59. [57] QIAN Y, KAWASHIMA S. Use of creep recovery protocol to measure static yield stress and structural rebuilding of fresh cement pastes[J]. Cement and Concrete Research, 2016, 90: 73-79. [58] PLEE D, LEBEDENKO F, OBRECHT F, et al. Microstructure, permeability and rheology of bentonite: cement slurries[J]. Cement and Concrete Research, 1990, 20(1): 45-61. [59] PANDA B, RUAN S Q, UNLUER C, et al. Improving the 3D printability of high volume fly ash mixtures via the use of nano attapulgite clay[J]. Composites Part B: Engineering, 2019, 165: 75-83. [60] KUDER K G, SHAH S P. Capillary rheology of extruded cement-based materials[M]//Measuring, Monitoring and Modeling Concrete Properties. Dordrecht: Springer Netherlands, 479-484. [61] KIM J H, BEACRAFT M, SHAH S P. Effect of mineral admixtures on formwork pressure of self-consolidating concrete[J]. Cement and Concrete Composites, 2010, 32(9): 665-671. [62] VOIGT T, MBELE J J, WANG K J, et al. Using fly ash, clay, and fibers for simultaneous improvement of concrete green strength and consolidatability for slip-form pavement[J]. Journal of Materials in Civil Engineering, 2010, 22(2): 196-206. [63] CHEN B, LIU J. Contribution of hybrid fibers on the properties of the high-strength lightweight concrete having good workability[J]. Cement and Concrete Research, 2005, 35(5): 913-917. [64] 王 里,王伯林,白 刚,等.3D打印混凝土各向异性力学性能研究[J].实验力学,2020,35(2):243-250. WANG L, WANG B L, BAI G, et al. Experimental study on the mechanical anisotropy of 3D printed concrete[J]. Journal of Experimental Mechanics, 2020, 35(2): 243-250 (in Chinese). [65] LE T T, AUSTIN S A, LIM S, et al. Hardened properties of high-performance printing concrete[J]. Cement and Concrete Research, 2012, 42(3): 558-566. [66] 田泽皓,王 里,张心颖,等.3D打印混凝土层间弱面的形成机制与改善方法[J].硅酸盐通报,2020,39(7):2052-2058. TIAN Z H, WANG L, ZHANG X Y, et al. Formation mechanism and improvement solutions for weak interlayer surfaces of 3D printing concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(7): 2052-2058 (in Chinese). [67] 段 严,秦先涛.3D打印混凝土相关性能研究进展[J].混凝土与水泥制品,2020(9):5-10. DUAN Y, QIN X T. Research progress on the properties of 3D printed concrete[J]. China Concrete and Cement Products, 2020(9): 5-10 (in Chinese). [68] TAY Y W D, TING G H A, QIAN Y, et al. Time gap effect on bond strength of 3D-printed concrete[J]. Virtual and Physical Prototyping, 2019, 14(1): 104-113. [69] SALVADOR R P, CAVALARO S H P, SEGURA I, et al. Early age hydration of cement pastes with alkaline and alkali-free accelerators for sprayed concrete[J]. Construction and Building Materials, 2016, 111: 386-398. [70] 杨力远,田俊涛,杨艺博,等.喷射混凝土液体速凝剂研究现状[J].隧道建设,2017,37(5):543-552. YANG L Y, TIAN J T, YANG Y B, et al. State-of-art of research on liquid accelerators for shotcrete[J]. Tunnel Construction, 2017, 37(5): 543-552 (in Chinese). [71] 陶龙光,刘 波.喷射混凝土用新型增稠剂增稠效用的理论分析[J].中国矿业大学学报,1996,25(4):17-21. TAO L G, LIU B. Theoretical study on effects of a newly developed thickener (IVA) used in shotcrete[J]. Journal of China University of Mining & Technology, 1996, 25(4): 17-21 (in Chinese). [72] CHEUNG J, JEKNAVORIAN A, ROBERTS L, et al. Impact of admixtures on the hydration kinetics of Portland cement[J]. Cement and Concrete Research, 2011, 41(12): 1289-1309. [73] ANGST U, ELSENER B, LARSEN C K, et al. Critical chloride content in reinforced concrete: a review[J]. Cement and Concrete Research, 2009, 39(12): 1122-1138. [74] WILLE K, EL-TAWIL S, NAAMAN A E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading[J]. Cement and Concrete Composites, 2014, 48: 53-66. [75] BOS F P, BOSCO E, SALET T A M. Ductility of 3D printed concrete reinforced with short straight steel fibers[J]. Virtual and Physical Prototyping, 2019, 14(2): 160-174. [76] PEPENAR I. An overview of nitrates-induced corrosion of reinforced concrete structures: case studies, laboratory investigations and corrosion mechanisms[J]. Civil and Environmental Research, 2013, 5: 106-110. [77] KOCHOVA K, SCHOLLBACH K, GAUVIN F, et al. Effect of saccharides on the hydration of ordinary Portland cement[J]. Construction and Building Materials, 2017, 150: 268-275. [78] 宋旭艳,严良海,韩静云,等.缓凝剂对磷酸镁水泥的早期性能影响[J].非金属矿,2018,41(6):33-36. SONG X Y, YAN L H, HAN J Y, et al. Influence of retarders on early property of magnesium phosphate cement[J]. Non-Metallic Mines, 2018, 41(6): 33-36 (in Chinese). [79] CHEN M X, GUO X Y, ZHENG Y, et al. Effect of tartaric acid on the printable, rheological and mechanical properties of 3D printing sulphoaluminate cement paste[J]. Materials, 2018, 11(12): 2417. [80] 晏 娟,戴兴健,刘维胜,等.再生骨料微粉对3D打印水泥基材料强度的影响[J].贵州师范大学学报(自然科学版),2020,38(6):81-85. YAN J, DAI X J, LIU W S, et al. Influence of recycled aggregate powder on the strength of 3D printing cementitious materials[J]. Journal of Guizhou Normal University (Natural Sciences), 2020, 38(6): 81-85 (in Chinese). [81] 顾怀全,贾天怡,宋怀印,等.3D打印磷渣粉混凝土的试验研究[J].贵州师范大学学报(自然科学版),2019,37(5):77-84. GU H Q, JIA T Y, SONG H Y, et al. Study of 3D printing concrete containing phosphorus slag powder[J]. Journal of Guizhou Normal University (Natural Sciences), 2019, 37(5): 77-84 (in Chinese). [82] 孙晓燕,乐凯笛,王海龙,等.挤出形状/尺寸对3D打印混凝土力学性能的影响[J].建筑材料学报,2020,23(6):1313-1320. SUN X Y, (YUE/LE) (, WANG H L, et al. Influence of extruded strip shape and dimension on the mechanical properties of 3D printed concrete[J]. Journal of Building Materials, 2020, 23(6): 1313-1320 (in Chinese). [83] 蒋亚清,许仲梓,黎 非,等.聚羧酸类混凝土引气剂的工程性能[J].东南大学学报(自然科学版),2006,36(4):568-571. JIANG Y Q, XU Z Z, LI F, et al. Engineering performance of polycarboxylate based air entraining agent[J]. Journal of Southeast University (Natural Science Edition), 2006, 36(4): 568-571 (in Chinese). |
[1] | 桂若铭, 廖宜顺, 黄浩然. 沸石粉对硫铝酸盐水泥水化行为的影响机理研究[J]. 硅酸盐通报, 2021, 40(7): 2138-2144. |
[2] | 陈梦竹, 余林文, 袁慧慧, 郑海兵, 吴芳, 蔡渝新, 李伟华. 木质素磺酸钠改性Ca-LDH对水泥基材料性能的影响[J]. 硅酸盐通报, 2021, 40(7): 2152-2158. |
[3] | 焦敏. 氧化石墨烯对新拌水泥浆体流变性的影响[J]. 硅酸盐通报, 2021, 40(7): 2159-2164. |
[4] | 刘芳, 熊锐, 钟勇强. 表面涂层对混凝土吸水性能的影响[J]. 硅酸盐通报, 2021, 40(7): 2209-2214. |
[5] | 袁璞, 步鹤, 位宁宁. 干湿循环下pH值对砂岩静态单轴力学特性的影响[J]. 硅酸盐通报, 2021, 40(7): 2232-2239. |
[6] | 阮永芬, 杨冰, 吴龙, 刘克文, 朱强. 化学改良湖相泥炭质土的配合比设计及其应用[J]. 硅酸盐通报, 2021, 40(7): 2240-2247. |
[7] | 王伟齐, 孙红, 葛修润. 碱激发作用下海相软土固化研究[J]. 硅酸盐通报, 2021, 40(7): 2248-2255. |
[8] | 段承刚, 孙永涛. 复掺高性能矿物掺合料对高强机制砂混凝土性能的影响[J]. 硅酸盐通报, 2021, 40(7): 2296-2305. |
[9] | 刘雅琦, 王淑娟, 李立新. 高炉镍铁渣和钢纤维改性混凝土的耐热性和热损伤规律[J]. 硅酸盐通报, 2021, 40(7): 2320-2330. |
[10] | 李宝玉. 石墨烯/聚乙烯复合改性沥青胶结料的流变性能研究[J]. 硅酸盐通报, 2021, 40(7): 2461-2468. |
[11] | 张超, 邓智聪, 马蕾, 刘超, 陈宇宁, 汪智斌, 贾子健, 王香港, 贾鲁涛, 陈春, 孙正明, 张亚梅. 3D打印混凝土研究进展及其应用[J]. 硅酸盐通报, 2021, 40(6): 1769-1795. |
[12] | 张翼, 朱艳梅, 任强, 蒋正武. 3D打印建筑技术及其水泥基材料研究进展评述[J]. 硅酸盐通报, 2021, 40(6): 1796-1807. |
[13] | 王里, 李丹利, 叶珂含, 关景元, 冯舵. 水泥基复合材料3D可打印性的量化、优化及标准化[J]. 硅酸盐通报, 2021, 40(6): 1814-1820. |
[14] | 焦泽坤, 王栋民, 王启宝, 黄天勇, 王吉祥, 李林坤. 3D打印混凝土材料可打印性的影响因素与测试方法[J]. 硅酸盐通报, 2021, 40(6): 1821-1831. |
[15] | 孙凯利, 吴翔强, 蔺喜强, 李国友, 李新健, 孙志鹏. 混凝土3D打印材料及3D打印模板技术应用进展[J]. 硅酸盐通报, 2021, 40(6): 1832-1843. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||