[1] JOSEPH P. Exploratory investigation of solid freeform construction[J]. Automation in Construction, 1997, 5(5): 427-437. [2] 马国伟,王 里.水泥基材料3D打印关键技术[M].北京:中国建材工业出版社,2020. MA G W, WANG L. Key technology of 3D printing of cement-based materials[M]. Beijing: China Building Materials Industry Press, 2020 (in Chinese). [3] 李小龙,王栋民,蔺喜强,等.建筑3D打印技术及材料的研究进展[C]//第十三届高性能混凝土学术研讨会论文集.唐山,2019:50-56. LI X L, WANG D M, LIN X Q, et al. Research progress of 3D printing technology and materials for buildings[C]//Proceedings of the 13th High Performance Concrete Symposium. Tangshan, 2019: 50-56 (in Chinese). [4] WU P, WANG J, WANG X Y. A critical review of the use of 3-D printing in the construction industry[J]. Automation in Construction, 2016, 68: 21-31. [5] MECHTCHERINE V, GRAFE J, NERELLA V N, et al. 3D-printed steel reinforcement for digital concrete construction: manufacture, mechanical properties and bond behaviour[J]. Construction and Building Materials, 2018, 179: 125-137. [6] 张大旺,王栋民.3D打印混凝土材料及混凝土建筑技术进展[J].硅酸盐通报,2015,34(6):1583-1588. ZHANG D W, WANG D M. Progress of 3D print of concrete materials and concrete construction technology[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(6): 1583-1588 (in Chinese). [7] 杨钱荣,赵宗志,李 晶,等.3D打印建筑砂浆流变性与打印性能及其相关性[J].混凝土,2021(1):118-121. YANG Q R, ZHAO Z Z, LI J, et al. Rheological properties and printability of 3D printing mortar and their relationship[J]. Concrete, 2021(1): 118-121 (in Chinese). [8] LE T T, AUSTIN S A, LIM S, et al. Mix design and fresh properties for high-performance printing concrete[J]. Materials and Structures, 2012, 45(8): 1221-1232. [9] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.水泥胶砂流动度测定方法:GB/T 2419—2005[S].北京:中国标准出版社,2005. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China. Method for determination of fluidity of cement mortar: GB/T 2419—2005[S]. Beijing: China Standards Press, 2005 (in Chinese). [10] 程文博.打印参数对3D打印水泥基材料施工性能的影响[D].北京:北京交通大学,2020. CHENG W B. Effect of printing parameters on the construction performance of 3D printing cement-based materials[D]. Beijing: Beijing Jiaotong University, 2020 (in Chinese). [11] 张洪萍.3D打印用水泥基活性粉末混凝土制备及性能研究[D].太原:中北大学,2020. ZHANG H P. Research on preparation and performance of cement-based reactive powder concrete for 3D printing[D]. Taiyuan: North University of China, 2020 (in Chinese). [12] 夏雨欣.3D打印碱激发胶凝材料的制备及性能研究[D].重庆:重庆大学,2019. XIA Y X. The preparation and properties on alkali-activated cementitious material for 3D printing[D]. Chongqing: Chongqing University, 2019 (in Chinese). [13] 刘 东,袁文韬,兰 聪,等.水泥基3D打印材料组分对打印效果的影响[J].新型建筑材料,2020,47(6):14-18. LIU D, YUAN W T, LAN C, et al. Effect of cement based 3D printing material composition on printing effect[J]. New Building Materials, 2020, 47(6): 14-18 (in Chinese). [14] 王海龙,汪 群,孙晓燕,等.基于工作性能的3D打印PVA纤维混凝土配合比优化设计[J].混凝土,2020(11):93-95. WANG H L, WANG Q, SUN X Y, et al. Optimization design of 3D printing PVA fiber concrete mix ratio based on work performance[J]. Concrete, 2020(11): 93-95 (in Chinese). [15] TAY Y W D, QIAN Y, TAN M J. Printability region for 3D concrete printing using slump and slump flow test[J]. Composites Part B: Engineering, 2019, 174: 106968. [16] ZOU S, XIAO J Z, DING T, et al. Printability and advantages of 3D printing mortar with 100% recycled sand[J]. Construction and Building Materials, 2021, 273: 121699. [17] LI X J, ZHANG N, YUAN J B, et al. Preparation and microstructural characterization of a novel 3D printable building material composed of copper tailings and iron tailings[J]. Construction and Building Materials, 2020, 249: 118779. [18] MOEINI M A, HOSSEINPOOR M, YAHIA A. Effectiveness of the rheometric methods to evaluate the build-up of cementitious mortars used for 3D printing[J]. Construction and Building Materials, 2020, 257: 119551. [19] ASTM Standard. Standard specification for flow table for use in tests of hydraulic cement: ASTM C230/C230M-21[S]. West Conshohocken, PA: ASTM International, 2014. [20] 林家超,吴 雄,杨 文,等.3D打印建筑材料性能影响因素与分析研究[J].新型建筑材料,2017,44(10):62-65. LIN J C, WU X, YANG W, et al. An analysis of factors influencing the building material performance on 3D printing[J]. New Building Materials, 2017, 44(10): 62-65 (in Chinese). [21] 章苏阳,蒋亚清,王 玉,等.3D打印水泥基材料的建造性研究[J].混凝土与水泥制品,2020(5):6-9. ZHANG S Y, JIANG Y Q, WANG Y, et al. Research on buildability of 3D printing cementitious materials[J]. China Concrete and Cement Products, 2020(5): 6-9 (in Chinese). [22] MA G W, LI Z J, WANG L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing[J]. Construction and Building Materials, 2018, 162: 613-627. [23] 朱艳梅,张 翼,蒋正武.羟丙基甲基纤维素对3D打印砂浆性能影响研究[J/OL].建筑材料学报:1-14[2021-03-04].http://kns.cnki.net/kcms/detail/31.1764.TU.20201028.1744.028.html. ZHU Y M,ZHANG Y,JIANG Z W.Hydroxypropyl methyl cellulose on the 3D printing mortar performance impact study[J/OL].Journal of building materials:1-14[2021-03-04]. http://kns.cnki.net/kcms/detail/31.1764.TU.20201028.1744.028.html (in Chinese). [24] SOUZA M T, FERREIRA I M, GUZI DE MORAES E, et al. 3D printed concrete for large-scale buildings: an overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects[J]. Journal of Building Engineering, 2020, 32: 101833. [25] 陈 雷,王栋民,蔺喜强,等.促凝剂与缓凝剂对快硬硫铝酸盐水泥性能的影响[C]//2011年混凝土与水泥制品学术讨论会论文集.无锡,2011:161-167. CHEN L, WANG D M, LIN X Q, et al. Effect of coagulant stimulant and retarder on properties of fast hardening sulfoaluminate cement[C]//Proceedings of the 2011 Symposium on Concrete and Cement Products. Wuxi, 2011: 161-167 (in Chinese). [26] 蔺喜强,张 涛,霍 亮,等.水泥基建筑3D打印材料的制备及应用研究[J].混凝土,2016(6):141-144. LIN X Q, ZHANG T, HUO L, et al. Preparation and application of 3D printing materials in construction[J]. Concrete, 2016(6): 141-144 (in Chinese). [27] 赵 颖,刘维胜,王 欢,等.石灰石粉对3D打印水泥基材料性能的影响[J].材料导报,2020,34(s2):1217-1220. ZHAO Y, LIU W S, WANG H, et al. Influence of limestone powder on performances of 3D printing cementitious materials[J]. Materials Reports, 2020, 34(s2): 1217-1220 (in Chinese). [28] CHEN M X, LI L B, WANG J A, et al. Rheological parameters and building time of 3D printing sulphoaluminate cement paste modified by retarder and diatomite[J]. Construction and Building Materials, 2020, 234: 117391. [29] CHEN M X, GUO X Y, ZHENG Y, et al. Effect of tartaric acid on the printable, rheological and mechanical properties of 3D printing sulphoaluminate cement paste[J]. Materials, 2018, 11(12): 2417. [30] POWERS T C. The properties of fresh concrete[J]. John Wiley and Sons, 1969, 24(2): 159. [31] TAYLOR P. Integrated materials and construction practices for concrete pavement: a state-of-the-practice manual (Proj.10) [J]. Concrete Pavements, 2006, [32] NERELLA V N, NÄTHER M, IQBAL A, et al. Inline quantification of extrudability of cementitious materials for digital construction[J]. Cement and Concrete Composites, 2019, 95: 260-270. [33] PERROT A, RANGEARD D, PIERRE A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques[J]. Materials and Structures, 2016, 49(4): 1213-1220. [34] ZHANG Y, ZHANG Y S, LIU G J, et al. Fresh properties of a novel 3D printing concrete ink[J]. Construction and Building Materials, 2018, 174: 263-271. [35] WOLFS R J M, BOS F P, SALET T A M. Early age mechanical behaviour of 3D printed concrete: numerical modelling and experimental testing[J]. Cement and Concrete Research, 2018, 106: 103-116. [36] MOHAN M K, RAHUL A V, VAN TITTELBOOM K, et al. Rheological and pumping behaviour of 3D printable cementitious materials with varying aggregate content[J]. Cement and Concrete Research, 2021, 139: 106258. [37] 王亚坤,杨钱荣.添加剂对3D打印轻骨料混凝土流变性和可打印性的影响[J/OL].建筑材料学报:1-12[2021-03-09].http://kns.cnki.net/kcms/detail/31.1764.TU.20200628.1100.016.html. WANG Y K, YANG Q R. Effect of additives on rheological properties and printability of 3D-printed lightweight aggregate concrete[J/OL]. Journal of building materials:1-12[2021-03-09]. http://kns.cnki.net/kcms/detail/31.1764.TU.20200628.1100.016.html (in Chinese). [38] 张大旺,王栋民,朴春爱,等.钢渣掺量对3D打印地质聚合物材料新拌浆体流变性的影响[J].应用基础与工程科学学报,2018,26(3):596-604. ZHANG D W, WANG D M, PIAO C A, et al. Effect of steel slag content on the rheology of 3D printing geopolymer pastes[J]. Journal of Basic Science and Engineering, 2018, 26(3): 596-604 (in Chinese). [39] REITER L, WANGLER T, ROUSSEL N, et al. The role of early age structural build-up in digital fabrication with concrete[J]. Cement and Concrete Research, 2018, 112: 86-95. [40] 刘巧玲,杨钱荣.聚合物对3D打印建筑砂浆流变特性的影响[J].建筑材料学报,2020,23(5):1206-1211. LIU Q L, YANG Q R. Influence of polymer on rheological properties of 3D printing building mortar[J]. Journal of Building Materials, 2020, 23(5): 1206-1211 (in Chinese). [41] CHHABRA R P, RICHARDSON J F. Non-Newtonian fluid behaviour[M]//Non-Newtonian Flow and Applied Rheology. Amsterdam: Elsevier, 2008: 1-55. [42] LIPSCOMB G G, DENN M M. Flow of Bingham fluids in complex geometries[J]. Journal of Non-Newtonian Fluid Mechanics, 1984, 14: 337-346. [43] WILLIAMS D A, SAAK A W, JENNINGS H M. The influence of mixing on the rheology of fresh cement paste[J]. Cement and Concrete Research, 1999, 29(9): 1491-1496. [44] 郭晓潞,杨君奕,熊归砚.硅酸镁铝及静置时间对地聚合物流变特性影响[J/OL].建筑材料学报:1-14[2021-03-10].http://kns.cnki.net/kcms/detail/31.1764.TU.20201130.0946.002.html. GUO X L, YANG J Y, XIONG G Y. Magnesium silicate aluminium and let stand for time to polymer rheology can influence [J/OL].Journal of building materials:1-14[2021-03-10]. http://kns.cnki.net/kcms/detail/31.1764.TU.20201130.0946.002.html (in Chinese). [45] ZHANG D W, WANG D M, LIN X Q, et al. The study of the structure rebuilding and yield stress of 3D printing geopolymer pastes[J]. Construction and Building Materials, 2018, 184: 575-580. [46] 孙振平,李祖悦,庞 敏,等.3D打印混凝土特殊性能的表征术语、涵义及影响因素[J].混凝土世界,2020(11):46-53. SUN Z P, LI Z Y, PANG M, et al. Characterization terms, meanings and influencing factors of properties of 3D printing concrete[J]. China Concrete, 2020(11): 46-53 (in Chinese). [47] WOLFS R R, SALET T T. An optimization strategy for 3D concrete printing[C]//Proceedings of the 22nd EG-IEC Workshop 2015. Eindhoven, 2015. [48] 孙晓燕,乐凯笛,王海龙,等.挤出形状/尺寸对3D打印混凝土力学性能的影响[J].建筑材料学报,2020,23(6):1313-1320. SUN X Y, LE K D, WANG H L, et al. Influence of extruded strip shape and dimension on the mechanical properties of 3D printed concrete[J]. Journal of Building Materials, 2020, 23(6): 1313-1320 (in Chinese). [49] 杨钱荣,赵宗志.3D打印建筑砂浆衔接性能测试方法:CN201410558245.6[P].2014-10-20. YANG Q R, ZHAO Z Z. Test method of joint performance of 3D printing building mortar: CN201410558245.6[P]. 2014-10-20 (in Chinese). [50] NAIR S A O, PANDA S, SANTHANAM M, et al. A critical examination of the influence of material characteristics and extruder geometry on 3D printing of cementitious binders[J]. Cement and Concrete Composites, 2020, 112: 103671. [51] SUIKER A S J, WOLFS R J M, LUCAS S M, et al. Elastic buckling and plastic collapse during 3D concrete printing[J]. Cement and Concrete Research, 2020, 135: 106016. [52] PANDA B, TAN M J. Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing[J]. Ceramics International, 2018, 44(9): 10258-10265. [53] NGUYEN V V, PANDA B, ZHANG G M, et al. Digital design computing and modelling for 3-D concrete printing[J]. Automation in Construction, 2021, 123: 103529. [54] 刘晓瑜,杨立荣,宋 扬.3D打印建筑用水泥基材料的研究进展[J].华北理工大学学报(自然科学版),2018,40(3):46-50. LIU X Y, YANG L R, SONG Y. Research progress of 3D printing building cement-based materials[J]. Journal of North China University of Science and Technology (Natural Science Edition), 2018, 40(3): 46-50 (in Chinese). |