[1] 常西栋,李维红,王 乾.3D打印混凝土材料及性能测试研究进展[J].硅酸盐通报,2019,38(8):2435-2441. CHANG X D, LI W H, WANG Q. Research progress of 3D printed concrete materials and its performance test[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(8): 2435-2441 (in Chinese). [2] 田泽皓,王 里,张心颖,等.3D打印混凝土层间弱面的形成机制与改善方法[J].硅酸盐通报,2020,39(7):2052-2058. TIAN Z H, WANG L, ZHANG X Y, et al. Formation mechanism and improvement solutions for weak interlayer surfaces of 3D printing concrete[J]. Bulletin of the Chinese Ceramic Society, 2020(7): 2052-2058 (in Chinese). [3] 侯泽宇,张 宇,张 超,等.3D打印混凝土各向异性力学性能研究[J].混凝土与水泥制品,2019,283(11):5-9. HOU Z Y, ZHANG Y, ZHANG C, et al. Experimental study on the mechanical anisotropy of 3D printed concrete[J]. China Concrete and Cement Products, 2019, 283(11): 5-9 (in Chinese). [4] 雷 斌,马 勇,熊悦辰,等.3D打印混凝土材料制备方法研究[J].混凝土,2018(2):145-149+153. LEI B, MA Y, XIONG Y C, et al. Study on preparation method of 3D printing concrete material[J]. Concrete, 2018(2): 145-149+153 (in Chinese). [5] 王海龙,汪 群,孙晓燕,等.基于工作性能的3D打印PVA纤维混凝土配合比优化设计[J].混凝土,2020(11):93-95. WANG H L, WANG Q, SUN X Y, et al. Optimization design of 3D printing PVA fiber concrete mix ratio based on work performance[J]. Concrete, 2020(11): 93-95 (in Chinese). [6] 王 里,王伯林,白 刚,等.3D打印混凝土各向异性力学性能研究[J].实验力学,2020,35(2):243-250. WANG L, WANG B L, BAI G, et al. Experimental study on the mechanical anisotropy of 3D printed concrete[J]. Journal of Experimental Mechanics, 2020, 35(2): 243-250 (in Chinese). [7] 王栋民,张大旺,刘 泽,等.3D打印混凝土标准与规程制定的问题研究[J].混凝土,2019(4):1-4. WANG D M, ZHANG D W, LIU Z, et al. Thinking and consideration in establishment of standards and procedures of 3D printing concrete[J]. Concrete, 2019(4): 1-4 (in Chinese). [8] 孙振平,李祖悦,庞 敏,等.3D打印混凝土特殊性能的表征术语、涵义及影响因素[J].混凝土世界,2020(11):46-53. SUN Z P, LI Z Y, PANG M, et al. Characterization terms, meanings and influencing factors of properties of 3D printing concrete[J]. China Concrete, 2020(11): 46-53 (in Chinese). [9] ZHANG G, LI G X, LI Y C. Effects of superplasticizers and retarders on the fluidity and strength of sulphoaluminate cement[J]. Construction and Building Materials, 2016, 126: 44-54. [10] 章苏阳,蒋亚清,王 玉,等.3D打印水泥基材料的建造性研究[J].混凝土与水泥制品,2020(5):6-9. ZHANG S Y, JIANG Y Q, WANG Y, et al. Research on buildability of 3D printing cementitious materials[J]. China Concrete and Cement Products, 2020(5): 6-9 (in Chinese). [11] 霍 亮,蔺喜强,李小龙,等.基于沙漠砂的3D打印砂浆性能研究及应用[J].混凝土,2020(12):108-110+117. HUO L, LIN X Q, LI X L, et al. Research and application of performance based on desert sand 3D printing mortar[J]. Concrete, 2020(12): 108-110+117 (in Chinese). [12] TAY Y W D, QIAN Y, TAN M J. Printability region for 3D concrete printing using slump and slump flow test[J]. Composites Part B: Engineering, 2019, 174: 106968. [13] MA G W, LI Z J, WANG L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing[J]. Construction and Building Materials, 2018, 162: 613-627. [14] LE T T, AUSTIN S A, LIM S, et al. Mix design and fresh properties for high-performance printing concrete[J]. Materials and Structures, 2012, 45(8): 1221-1232. [15] LAFHAJ Z, RABENANTOANDRO A Z, EL MOUSSAOUI S, et al. Experimental approach for printability assessment: toward a practical decision-making framework of printability for cementitious materials[J]. Buildings, 2019, 9(12): 245. [16] CHEN Y, LI Z, FIGUEIREDO S C, et al. Limestone and calcined clay-based sustainable cementitious materials for 3D concrete printing: a fundamental study of extrudability and early-age strength development[J]. Applied Sciences, 2019, 9(9): 1809. [17] LONG W J, TAO J L, LIN C, et al. Rheology and buildability of sustainable cement-based composites containing micro-crystalline cellulose for 3D-printing[J]. Journal of Cleaner Production, 2019, 239: 118054. [18] YUAN Q, LI Z M, ZHOU D J, et al. A feasible method for measuring the buildability of fresh 3D printing mortar[J]. Construction and Building Materials, 2019, 227: 116600. [19] BHATTACHERJEE S, SANTHANAM M. Enhancing buildability of 3D printable concrete by spraying of accelerating admixture on surface[C]//Second RILEM International Conference on Concrete and Digital Fabrication, 2020: 13-22. [20] CHEN Y, CHAVES FIGUEIREDO S, LI Z M, et al. Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixture[J]. Cement and Concrete Research, 2020, 132: 106040. [21] WOLFS R J M, BOS F P, SALET T A M. Early age mechanical behaviour of 3D printed concrete: numerical modelling and experimental testing[J]. Cement and Concrete Research, 2018, 106: 103-116. [22] PERROT A, RANGEARD D, COURTEILLE E. 3D printing of earth-based materials: processing aspects[J]. Construction and Building Materials, 2018, 172: 670-676. [23] HUANG T J, LI B Y, YUAN Q, et al. Rheological behavior of Portland clinker-calcium sulphoaluminate clinker-anhydrite ternary blend[J]. Cement and Concrete Composites, 2019, 104: 103403. [24] PANDA B, TAN M J. Rheological behavior of high volume fly ash mixtures containing micro silica for digital construction application[J]. Materials Letters, 2019, 237: 348-351. [25] ZHANG D W, WANG D M, LIN X Q, et al. The study of the structure rebuilding and yield stress of 3D printing geopolymer pastes[J]. Construction and Building Materials, 2018, 184: 575-580. [26] 杨钱荣,赵宗志,肖建庄,等.矿物掺合料与外加剂对3D打印砂浆性能的影响[J/OL].建筑材料学报:1-9.http://kns.cnki.net/kcms/detail/31.1764.TU.20200410.0956.008.html. YANG Q R, ZHAO Z Z, XIAO J Z, et al. Effect of mineral admixtures and chemical admixtures on the performance of 3D printing mortar[J/OL]. Journal of Building Materials: 1-9. http://kns.cnki.net/kcms/detail/31.1764.TU.20200410.0956.008.html (in Chinese). [27] PANDA B, PAUL S C, MOHAMED N A N, et al. Measurement of tensile bond strength of 3D printed geopolymer mortar[J]. Measurement, 2018, 113: 108-116. [28] TAY Y W D, LI M Y, TAN M J. Effect of printing parameters in 3D concrete printing: printing region and support structures[J]. Journal of Materials Processing Technology, 2019, 271: 261-270. [29] 武 雷,郭潞杰,康 强.3D打印混凝土工艺参数对成型精度的影响[J].混凝土与水泥制品,2020(11):1-5. WU L, GUO L J, KANG Q. The influence of 3D printed concrete process parameters on forming precision[J]. China Concrete and Cement Products, 2020(11): 1-5 (in Chinese). [30] ZHANG Y, ZHANG Y S, LIU G J, et al. Fresh properties of a novel 3D printing concrete ink[J]. Construction and Building Materials, 2018, 174: 263-271. [31] 李维红,常西栋,王 乾,等.矿物掺合料对3D打印水泥基材料性能的影响[J].硅酸盐通报,2020,39(10):3101-3107+3114. LI W H, CHANG X D, WANG Q, et al. Effect of mineral admixture on properties of 3D printing cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(10): 3101-3107+3114 (in Chinese). [32] 赵 颖,刘维胜,王 欢,等.石灰石粉对3D打印水泥基材料性能的影响[J].材料导报,2020,34(s2):1217-1220. ZHAO Y, LIU W S, WANG H, et al. Influence of limestone powder on performances of 3D printing cementitious materials[J]. Materials Reports, 2020, 34(s2): 1217-1220 (in Chinese). [33] 晏 娟,戴兴健,刘维胜,等.再生骨料微粉对3D打印水泥基材料强度的影响[J].贵州师范大学学报(自然科学版),2020,38(6):81-85. YAN J, DAI X J, LIU W S, et al. Influence of recycled aggregate powder on the strength of 3D printing cementitious materials[J]. Journal of Guizhou Normal University (Natural Sciences), 2020(6): 81-85 (in Chinese). [34] MOHAN M K, RAHUL A V, VAN TITTELBOOM K, et al. Rheological and pumping behaviour of 3D printable cementitious materials with varying aggregate content[J]. Cement and Concrete Research, 2021, 139: 106258. [35] MALAEB Z, HACHEM H, TOURBAH A, et al. 3D concrete printing: machine and mix design[J]. International Journal of Civil Engineering and Technology, 2015, 6(6): 14-22. [36] KHALIL N, AOUAD G, EL CHEIKH K, et al. Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars[J]. Construction and Building Materials, 2017, 157: 382-391. [37] ZHANG C, HOU Z Y, CHEN C, et al. Design of 3D printable concrete based on the relationship between flowability of cement paste and optimum aggregate content[J]. Cement and Concrete Composites, 2019, 104: 103406. [38] SHAKOR P, SANJAYAN J, NAZARI A, et al. Modified 3D printed powder to cement-based material and mechanical properties of cement scaffold used in 3D printing[J]. Construction and Building Materials, 2017, 138: 398-409. [39] 蔺喜强,张 涛,霍 亮,等.水泥基建筑3D打印材料的制备及应用研究[J].混凝土,2016(6):141-144. LIN X Q, ZHANG T, HUO L, et al. Preparation and application of 3D printing materials in construction[J]. Concrete, 2016(6): 141-144 (in Chinese). [40] 任常在,王文龙,李国麟,等.固废基硫铝酸盐胶凝材料用于建筑3D打印的特性与过程仿真[J].化工学报,2018,69(7):3270-3278. REN C Z, WANG W L, LI G L, et al. Characteristics of solid-waste-based sulfoaluminate cementitious material being used in 3D printing and process simulation[J]. CIESC Journal, 2018, 69(7): 3270-3278 (in Chinese). [41] 朱艳梅,张 翼,蒋正武.羟丙基甲基纤维素对3D打印砂浆性能影响研究[J/OL].建筑材料学报:1-14.http://kns.cnki.net/kcms/detail/31.1764.TU.20201028.1744.028.html. ZHU Y M, ZHANG Y, JIANG Z W. Effect of hydroxypropyl methylcellulose ether on properties of 3D printing mortar[J/OL]. Journal of Building Materials: 1-14. http://kns.cnki.net/kcms/detail/31.1764.TU.20201028.1744.028.html (in Chinese). [42] 王亚坤,杨钱荣.添加剂对3D打印轻骨料混凝土流变性和可打印性的影响[J/OL].建筑材料学报:1-12.http://kns.cnki.net/kcms/detail/31.1764.TU.20200628.1100.016.html. WANG Y K, YANG Q R. Effect of additives on rheological properties and printability of 3D printing lightweight aggregate concrete[J/OL]. Journal of Building Materials: 1-12. http://kns.cnki.net/kcms/detail/31.1764.TU.20200628.1100.016.html (in Chinese). [43] KHALIL N, RÉMOND S, BAZ B, et al. Characterization of 3D printing mortars made with OPC/CSA mixes[M]//RILEM Bookseries. Cham: Springer International Publishing, 2018: 53-60. [44] 楚宇扬,徐金涛,刘 烨,等.快硬硫铝酸盐水泥在3D打印材料中的应用[J/OL].建筑材料学报:1-11.http://kns.cnki.net/kcms/detail/31.1764.TU.20200818.1005.014.html. CHU Y Y, XU J T, LIU Y, et al. Application of rapid hardening sulphoaluminate cement in 3D printing materials[J/OL]. Journal of Building Materials: 1-11. http://kns.cnki.net/kcms/detail/31.1764.TU.20200818.1005.014.html (in Chinese). [45] VAITKEVIIUS V, ERELIS E, KEREVIIUS V. Effect of ultra-sonic activation on early hydration process in 3D concrete printing technology[J]. Construction and Building Materials, 2018, 169: 354-363. [46] GUNDUZ I E, MCCLAIN M S, CATTANI P, et al. 3D printing of extremely viscous materials using ultrasonic vibrations[J]. Additive Manufacturing, 2018, 22: 98-103. [47] SANJAYAN J G, JAYATHILAKAGE R, RAJEEV P. Vibration induced active rheology control for 3D concrete printing[J]. Cement and Concrete Research, 2021, 140: 106293. |