[1] 李庆余, 王爱美, 吴 晓, 等. 调水调沙影响下黄河口泥沙异重流过程[J]. 海洋地质前沿, 2021, 37(8): 52-63. LI Q Y, WANG A M, WU X, et al. Water and sediment regulation of the Yellow River and its impact on hyperpycnal flow in the estuary[J]. Marine Geology Frontiers, 2021, 37(8): 52-63 (in Chinese). [2] ZHANG K P, WU W J, FAN J H, et al. The influence and mechanism of curing methods and curing age on the mechanical properties of Yellow River sand engineered cementitious composites[J]. Materials, 2024, 17(17): 4307. [3] 王立霞. 黄河砂在大流动性混凝土中的应用研究[J]. 人民黄河, 2017, 39(8): 106-111. WANG L X. Application of Yellow River sand in high flowing concrete[J]. Yellow River, 2017, 39(8): 106-111 (in Chinese). [4] YUAN C F, RAZA A, MANAN A, et al. Numerical and experimental study of Yellow River sand in engineered cementitious composite[J]. Proceedings of the Institution of Civil Engineers-Engineering Sustainability, 2025, 178(1): 3-20. [5] 杨龙宾, 李兆恒, 严 军, 等. 黄河粉砂制备生态型高强度混凝土的研究[J]. 人民黄河, 2023, 45(7): 157-162. YANG L B, LI Z H, YAN J, et al. Study on preparation of ecological high strength concrete from Yellow River silt[J]. Yellow River, 2023, 45(7): 157-162 (in Chinese). [6] 张 帅. 黄河特细砂混凝土力学性能及早期收缩性能试验研究[D]. 郑州: 郑州大学, 2016: 36-37. ZHANG S. Experimental study of concrete’s mechanical propertiesand early shrinkage mixed with super-fine sand produced in the Yellow River[D]. Zhengzhou: Zhengzhou University, 2016: 36-37 (in Chinese). [7] 贺东青, 李衫元, 迟曼曼, 等. 钢纤维自密实特细砂混凝土性能的实验研究[J]. 河南大学学报(自然科学版), 2021, 51(5): 597-603. HE D Q, LI S Y, CHI M M, et al. Experimental study on the performance of steel fiber self-compacting ultra-fine sand concrete[J]. Journal of Henan University (Natural Science), 2021, 51(5): 597-603 (in Chinese). [8] HAMBACH M, RUTZEN M, VOLKMER D. Properties of 3D-printed fiber-reinforced portland cement paste[M]. 3D concrete printing technology. Butterworth-Heinemann, 2019: 73-113. [9] YE J H, CUI C, YU J T, et al. Fresh and anisotropic-mechanical properties of 3D printable ultra-high ductile concrete with crumb rubber[J]. Composites Part B: Engineering, 2021, 211: 108639. [10] 中国工程建设标准化协会. 混凝土3D打印技术规程: T/CECS 786—2020[S]. 北京: 中国建筑工业出版社, 2020. China Engineering Construction Standardization Association. Technical specification for concrete 3D printing: T/CECS 786—2020[S]. Beijing: China Construction Industry Press, 2020 (in Chinese). [11] 中华人民共和国国家质量监督检验检验总局, 中国国家标准化管理委员会. 水泥胶砂流动度测定方法: GB/T 2419—2005[S]. 北京: 中国标准出版社, 2005. General Administration of Quality Supervision, Inspection and Inspection of the People's Republic of China, National Standardization Administration of China. Determination method of fluidity of cement cement sand: GB/T 2419—2005[S]. Beijing: China Standard Press, 2005 (in Chinese). [12] American Society for Testing and Materials. Standard guide for measurement of the rheological properties of hydraulic cementitious paste using a rotational rheometer: ASTM C1749-17a[S]. West Conshohocken: ASTM International, 2017. [13] American Society for Testing and Materials. Standard test methods for time of setting of hydraulic cement by vicat needle: ASTM C191—08[S]. West Conshohocken, PA: ASTM International, 2008. [14] American Society for Testing and Materials. Standard test method for measurement of heat of hydration of hydraulic cementitious materials using isothermal conduction calorimetry: ASTM C1702—23[S]. West Conshohocken, PA: ASTM International, 2023. [15] LE T T, AUSTIN S A, LIM S, et al. Hardened properties of high-performance printing concrete[J]. Cement and Concrete Research, 2012, 42(3): 558-566. [16] 王亚坤, 杨钱荣. 添加剂对3D打印轻骨料混凝土流变性和可打印性的影响[J]. 建筑材料学报, 2021, 24(4): 749-757. WANG Y K, YANG Q R. Effect of additives on rheological properties and printability of 3D printing lightweight aggregate concrete[J]. Journal of Building Materials, 2021, 24(4): 749-757 (in Chinese). [17] 李维红, 常西栋, 王 乾, 等. 速凝3D打印水泥基材料的制备[J]. 功能材料, 2020, 51(5): 5148-5153. LI W H, CHANG X D, WANG Q, et al. Preparation of quick-setting 3D printing cement-based materials[J]. Journal of Functional Materials, 2020, 51(5): 5148-5153 (in Chinese). [18] LIU C, WANG X G, CHEN Y N, et al. Influence of hydroxypropyl methylcellulose and silica fume on stability, rheological properties, and printability of 3D printing foam concrete[J]. Cement and Concrete Composites, 2021, 122: 104158. [19] 邢振贤, 王健健, 孟小培, 等. 黄河特细砂在泵送混凝土中的应用研究[J]. 混凝土, 2017(1): 110-113. XING Z X, WANG J J, MENG X P, et al. Application of Yellow River superfine sand in pumping concrete[J]. Concrete, 2017(1): 110-113 (in Chinese). [20] 焦泽坤, 王栋民, 王启宝, 等. 3D打印混凝土材料可打印性的影响因素与测试方法[J]. 硅酸盐通报, 2021, 40(6): 1821-1831. JIAO Z K, WANG D M, WANG Q B, et al. Influencing factors and testing methods of printability of 3D printing concrete materials[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1821-1831 (in Chinese). [21] MOHAN M K, RAHUL A V, VAN TITTELBOOM K, et al. Rheological and pumping behaviour of 3D printable cementitious materials with varying aggregate content[J]. Cement and Concrete Research, 2021, 139: 106258. [22] 杨钱荣, 赵宗志, 刘巧玲, 等. 3D打印混凝土工作性及可建造性测试与评价方法[J]. 中国建材科技, 2021, 30(3): 107-111. YANG Q R, ZHAO Z Z, LIU Q L, et al. Evaluation and test methods for workability and buildability of 3D printing concrete[J]. China Building Materials Science & Technology, 2021, 30(3): 107-111 (in Chinese). [23] FERNÁNDEZ C, MERCEDES M. Effect of particle size on the hydration kinetics and microstructural development of tricalcium silicate[R]. EPFL, 2008. |