[1] CHEN K Y, WU D Z, XIA L L, et al. Geopolymer concrete durability subjected to aggressive environments: a review of influence factors and comparison with ordinary Portland cement[J]. Construction and Building Materials, 2021, 279: 122496. [2] LIU C X, WU D Z, CHEN M L, et al. Study on the mechanical properties and molecular dynamics simulation of one-component fly ash-slag-based geopolymer[J]. Journal of Building Engineering, 2025, 101: 111957. [3] WILLSON-LEVY R, PELED A, KLEIN-BENDAVID O, et al. Development of one-part geopolymers based on industrial carbonate waste[J]. Construction and Building Materials, 2023, 365: 130009. [4] 沈杨海, 吴新燕, 张颖涛, 等. 硅酸钠和硅灰激发剂对地质聚合物混凝土性能的影响[J]. 材料导报, 2022, 36(增刊2): 240-244. SHEN Y H, WU X Y, ZHANG Y T, et al. Effect of sodium silicate and silica fume activator on properties of geopolymer concrete[J]. Materials Reports, 2022, 36(supplement 2): 240-244 (in Chinese). [5] LEE N K, LEE H K. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature[J]. Construction and Building Materials, 2013, 47: 1201-1209. [6] KEKEZ S, NOVÁKOVÁ I, LACH M, et al. Waste valorization for fabrication of geopolymers[J]. Case Studies in Construction Materials, 2025, 22: e04388. [7] HUANG M Y, QIU Z M, BAO S X, et al. Green low-carbon approach for the preparation of solid waste-based geopolymer: one-part geopolymer vs. two-part geopolymer[J]. Journal of Environmental Chemical Engineering, 2025, 13(3): 116270. [8] DONG T K, SUN T, XU F, et al. Effect of solid sodium silicate on workability, hydration and strength of alkali-activated GGBS/fly ash paste[J]. Coatings, 2023, 13(4): 696. [9] 蒋明屾, 李 飞, 周理安, 等. 碳酸钠、氢氧化钠与水玻璃复合激发对地聚合物胶凝材料性能的影响[J]. 硅酸盐通报, 2024, 43(3): 929-937. JIANG M S, LI F, ZHOU L A, et al. Effects of sodium carbonate, sodium hydroxide and sodium silicate composite activation on properties of geopolymer cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(3): 929-937 (in Chinese). [10] WANG D, ZHANG Z Y, GUO W C, et al. A novel all-solid-waste binder prepared by salt-alkali synergistic activation system constructed from phosphogypsum, soda residue and calcium carbide slag[J]. Cement and Concrete Composites, 2025, 155: 105841. [11] 赵志广, 瞿晓玲, 贺图升, 等. 外加组分对碱激发矿渣/粉煤灰胶凝体系强度影响研究[J]. 新型建筑材料, 2024, 51(11): 43-47+97. ZHAO Z G, QU X L, HE T S, et al. Effect of additives on the strength of alkali activated slag/fly ash cementitious system[J]. New Building Materials, 2024, 51(11): 43-47+97 (in Chinese). [12] WANG J X, LYU X J, WANG L Y, et al. Influence of the combination of calcium oxide and sodium carbonate on the hydration reactivity of alkali-activated slag binders[J]. Journal of Cleaner Production, 2018, 171: 622-629. [13] GAO X, YAO X, YANG T, et al. Calcium carbide residue as auxiliary activator for one-part sodium carbonate-activated slag cements: compressive strength, phase assemblage and environmental benefits[J]. Construction and Building Materials, 2021, 308: 125015. [14] CHEN M L, WU D Z, CHEN K Y, et al. The effects of solid activator dosage and the liquid-solid ratio on the properties of FA-GGBS based one-part geopolymer[J]. Construction and Building Materials, 2025, 463: 140067. [15] MO B H, ZHU H, CUI X M, et al. Effect of curing temperature on geopolymerization of metakaolin-based geopolymers[J]. Applied Clay Science, 2014, 99: 144-148. [16] 王玲玲, 司晨玉, 李 畅, 等. 氢氧化钾-钠水玻璃激发剂对碱激发矿渣胶凝材料性能的影响[J]. 硅酸盐通报, 2022, 41(8): 2654-2662+2695. WANG L L, SI C Y, LI C, et al. Effect of potassium hydroxide-sodium water glass activator on properties of alkali-activated slag cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(8): 2654-2662+2695 (in Chinese). [17] WANG A Q, ZHANG C Z, SUN W. Fly ash effects: I. The morphological effect of fly ash[J]. Cement and Concrete Research, 2003, 33(12): 2023-2029. [18] PROVIS J L, MYERS R J, WHITE C E, et al. X-ray microtomography shows pore structure and tortuosity in alkali-activated binders[J]. Cement and Concrete Research, 2012, 42(6): 855-864. [19] SUH J I, YUM W S, JEONG Y, et al. The cation-dependent effects of formate salt additives on the strength and microstructure of CaO-activated fly ash binders[J]. Construction and Building Materials, 2019, 194: 92-101. [20] JIANG T, JIN Y. Phase analysis of alkali-activated slag hybridized with low-calcium and high-calcium fly ash[J]. Sustainability, 2022, 14(7): 3767. [21] GAO X, YANG T, LI X, et al. Effects of U-phase formation on early-age autogenous shrinkage of one-part alkali-activated slag[J]. Cement and Concrete Research, 2025, 196: 107938. |