[1] 吴珺华, 李嘉豪, 赵士文. 分级真空预压加固软土地基位移变化规律模拟[J]. 南昌航空大学学报(自然科学版), 2023, 37(4): 56-65. WU J H, LI J H, ZHAO S W. Displacement variation law of soft soil foundation strengthened by step vacuum preloading[J]. Journal of Nanchang Hangkong University (Natural Sciences), 2023, 37(4): 56-65 (in Chinese). [2] 杜常博, 李东泽, 易 富, 等. 改性玄武岩纤维对混凝土抗硫酸盐性能的影响[J/OL]. 复合材料学报, 1-10 (2024-07-30) [2024-12-05]. https://doi.org/10.13801/j.cnki.fhclxb.20240730.001. DU C B, LI D Z, YI F, et al. Effect of modified basalt fiber on the sulfate resistance of concrete[J/OL]. Acta Materiae Compositae Sinica, 1-10 (2024-07-30) [2024-12-05]. https://doi.org/10.13801/j.cnki.fhclxb.20240730.001 (in Chinese). [3] 李少飞, 魏智强, 乔宏霞, 等. 纳米氧化石墨烯与聚合物改性水泥基复合材料性能研究进展[J/OL]. 材料导报, 1-22 (2024-06-17) [2024-12-05]. http://kns.cnki.net/kcms/detail/50.1078.tb.20240614.1838.004.html. LI S F, WEI Z Q, QIAO H X, et al. Research progress on properties of polymer cement-based composites modified by nano-graphene oxide[J/OL]. Materials Reports, 1-22 (2024-06-17) [2024-12-05]. http://kns.cnki.net/kcms/detail/50.1078.tb.20240614.1838.004.html (in Chinese). [4] WANG W, WU E L, HUANG S S, et al. Experimental investigation on static and dynamic properties of nanosilica modified cement soil[J]. Construction and Building Materials, 2024, 412: 134746. [5] RIBEIRO D, NÉRI R, CARDOSO R. Influence of water content in the UCS of cement soil mixtures for different cement dosages[J]. Procedia Engineering, 2016, 143: 59-66. [6] BAHAR R, BENAZZOUG M, KENAI S. Performance of compacted cement-stabilised soil[J]. Cement and Concrete Composites, 2004, 26(7): 811-820. [7] LANG L, SONG C Y, XUE L, et al. Effectiveness of waste steel slag powder on the strength development and associated micro-mechanisms of cement-stabilized dredged sludge[J]. Construction and Building Materials, 2020, 240: 117975. [8] LI W T, YI Y L. Use of carbide slag from acetylene industry for activation of ground granulated blast-furnace slag[J]. Construction and Building Materials, 2020, 238: 117713. [9] 董烨民, 钱 雄, 胡传林, 等. 新型胶凝材料: 石灰石煅烧黏土水泥研究进展[J]. 硅酸盐学报, 2023, 51(9): 2446-2464. DONG Y M, QIAN X, HU C L, et al. New cementitious material: advances in limestone calcined clay cement[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2446-2464 (in Chinese). [10] SABERIAN M, TAJADDINI A, LI J, et al. Mechanical properties of polypropylene fiber reinforced recycled concrete aggregate for sustainable road base and subbase applications[J]. Construction and Building Materials, 2023, 405: 133352. [11] 崔 凯, 徐礼华, 池 寅. 钢-聚丙烯混杂纤维混凝土等幅受压疲劳变形[J]. 建筑材料学报, 2023, 26(7): 755-761. CUI K, XU L H, CHI Y. Fatigue deformation of steel-polypropylene hybrid fiber reinforced concrete under constant-amplitude cyclic compression[J]. Journal of Building Materials, 2023, 26(7): 755-761 (in Chinese). [12] 易 金, 王 磊, 李 增, 等. 聚丙烯纤维增强珊瑚混凝土韧性试验研究[J]. 建筑材料学报, 2024, 27(10): 913-921. YI J, WANG L, LI Z, et al. Experimental study on toughness of polypropylene fiber reinforced coral concrete[J]. Journal of Building Materials, 2024, 27(10): 913-921 (in Chinese). [13] 张志韬, 陈生水, 吉恩跃, 等. 聚丙烯纤维加筋砾质黏土的拉伸断裂特性研究[J]. 岩土力学, 2021, 42(10): 2713-2721. ZHANG Z T, CHEN S S, JI E Y, et al. Tensile fracture properties of gravelly soil reinforced by polypropylene fiber[J]. Rock and Soil Mechanics, 2021, 42(10): 2713-2721 (in Chinese). [14] 张建伟, 吕子壮, 李 想, 等. 干湿循环作用下聚丙烯纤维对酶诱导碳酸盐沉淀固化砂土的耐久性研究[J]. 复合材料学报, 2025, 42(2): 1000-1009. ZHANG J W, LYU Z Z, LI X, et al. Durability study of polypropylene fibers on enzyme-induced carbonate precipitation cured sandy soil under dry-wet cycling[J]. Acta Materiae Compositae Sinica, 2025, 42(2): 1000-1009 (in Chinese). [15] XIAO Y, TONG L Y, CHE H B, et al. Experimental studies on compressive and tensile strength of cement-stabilized soil reinforced with rice husks and polypropylene fibers[J]. Construction and Building Materials, 2022, 344: 128242. [16] TIWARI N, SATYAM N, PATVA J. Engineering characteristics and performance of polypropylene fiber and silica fume treated expansive soil subgrade[J]. International Journal of Geosynthetics and Ground Engineering, 2020, 6(2): 18. [17] AKBARI H R, SHARAFI H, GOODARZI A R. Effect of polypropylene fiber and nano-zeolite on stabilized soft soil under wet-dry cycles[J]. Geotextiles and Geomembranes, 2021, 49(6): 1470-1482. [18] ZHANG X D, PANG S, SU L J, et al. Triaxial mechanical properties and microscopic characterization of fiber-reinforced cement stabilized aeolian sand-coal gangue blends[J]. Construction and Building Materials, 2022, 346: 128481. [19] HAY R, PENG B, CELIK K. Filler effects of CaCO3 polymorphs derived from limestone and seashell on hydration and carbonation of reactive magnesium oxide (MgO) cement (RMC)[J]. Cement and Concrete Research, 2023, 164: 107040. [20] ZAJAC M, IRBE L, BULLERJAHN F, et al. Mechanisms of carbonation hydration hardening in Portland cements[J]. Cement and Concrete Research, 2022, 152: 106687. [21] 王 伟, 周 航, 李 健, 等. 碳化过程对水泥土力学特性影响的研究与评价[J]. 铁道科学与工程学报, 2021, 18(12): 3239-3246. WANG W, ZHOU H, LI J, et al. Experimental and evaluation on the influence of carbonation process on the mechanical properties of cement soil[J]. Journal of Railway Science and Engineering, 2021, 18(12): 3239-3246 (in Chinese). [22] WANG X L, GUO M Z, LING T C. Review on CO2 curing of non-hydraulic calcium silicates cements: mechanism, carbonation and performance[J]. Cement and Concrete Composites, 2022, 133: 104641. [23] JIANG Y, LI L, LU J X, et al. Enhancing the microstructure and surface texture of recycled concrete fine aggregate via magnesium-modified carbonation[J]. Cement and Concrete Research, 2022, 162: 106967. [24] YANG J, ZHAO H L, HE X Y, et al. Achieving carbon utilization and storage (CUS) in cement-based materials with wet-grinding carbonated concrete slurry waste[J]. Cement and Concrete Composites, 2024, 152: 105642. [25] FANG Z Y, GAO Y H, HE W, et al. Carbonation curing of magnesium-coal slag solid waste backfill material: study on properties of flow, mechanics and carbon sequestration[J]. Case Studies in Construction Materials, 2024, 20: e03204. [26] HUANG H, GUO R N, WANG T, et al. Carbonation curing for wollastonite-Portland cementitious materials: CO2 sequestration potential and feasibility assessment[J]. Journal of Cleaner Production, 2019, 211: 830-841. [27] 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for geotechnical test methods: GB/T 50123—2019[S]. Beijing: China Plan Publishing House, 2019 (in Chinese). [28] YANG X, WANG X Y. Strength and durability improvements of biochar-blended mortar or paste using accelerated carbonation curing[J]. Journal of CO2 Utilization, 2021, 54: 101766. [29] WANG L, CHEN L, POON C S, et al. Roles of biochar and CO2 curing in sustainable magnesia cement-based composites[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(25): 8603-8610. [30] LIU X, FENG P, CAI Y X, et al. Carbonation behavior of calcium silicate hydrate (C-S-H): its potential for CO2 capture[J]. Chemical Engineering Journal, 2022, 431: 134243. [31] LIANG C F, LI B L, GUO M Z, et al. Effects of early-age carbonation curing on the properties of cement-based materials: a review[J]. Journal of Building Engineering, 2024, 84: 108495. [32] TANG C S, SHI B, GAO W, et al. Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil[J]. Geotextiles and Geomembranes, 2007, 25(3): 194-202. [33] ASHRAF W. Carbonation of cement-based materials: challenges and opportunities[J]. Construction and Building Materials, 2016, 120: 558-570. [34] PAPADAKIS V G, VAYENAS C G, FARDIS M N. A reaction engineering approach to the problem of concrete carbonation[J]. AIChE Journal, 1989, 35(10): 1639-1650. [35] LIPPIATT N, LING T C. Rapid hydration mechanism of carbonic acid and cement[J]. Journal of Building Engineering, 2020, 31: 101357. |