BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2025, Vol. 44 ›› Issue (4): 1255-1266.DOI: 10.16552/j.cnki.issn1001-1625.2024.1401
• Reviews • Previous Articles Next Articles
SUN Xinpo1, WANG Chunying1, TIAN Zijian2, XU Ao1
Received:2024-11-18
Revised:2025-02-06
Online:2025-04-15
Published:2025-04-18
CLC Number:
SUN Xinpo, WANG Chunying, TIAN Zijian, XU Ao. Review on Reuse of Discarded Masks in Cement-based Building Materials[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1255-1266.
| [1] AMMENDOLIA J, SATURNO J, BROOKS A L, et al. An emerging source of plastic pollution: environmental presence of plastic personal protective equipment (PPE) debris related to COVID-19 in a metropolitan city[J]. Environmental Pollution, 2021, 269: 116160. [2] ARIZTON. Face mask market-global outlook & forecast 2021-2026[R/OL]. (2021-05-06)[2024-11-01]. https://www.reportlinker.com/p05934703/Face-Mask-Market-Global-Outlook-and-Forecast.html?utm_source=GNW. [3] PRATA J C, SILVA A L P, WALKER T R, et al. COVID-19 pandemic repercussions on the use and management of plastics[J]. Environmental Science & Technology, 2020, 54(13): 7760-7765. [4] BOROUJENI M, SABERIAN M, LI J. Environmental impacts of COVID-19 on Victoria, Australia, witnessed two waves of Coronavirus[J]. Environmental Science and Pollution Research International, 2021, 28(11): 14182-14191. [5] DHARMARAJ S, ASHOKKUMAR V, HARIHARAN S, et al. The COVID-19 pandemic face mask waste: a blooming threat to the marine environment[J]. Chemosphere, 2021, 272: 129601. [6] TORRES F G, DE-LA-TORRE G E. Face mask waste generation and management during the COVID-19 pandemic: an overview and the Peruvian case[J]. Science of the Total Environment, 2021, 786: 147628. [7] ARAGAW T A. Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario[J]. Marine Pollution Bulletin, 2020, 159: 111517. [8] WANG Z, AN C J, CHEN X J, et al. Disposable masks release microplastics to the aqueous environment with exacerbation by natural weathering[J]. Journal of Hazardous Materials, 2021, 417: 126036. [9] THOMAS G P. Recycling of polypropylene (PP)[EB/OL].(2012-07-08)[2024-11-01]. https://www.azocleantech.com/article.Aspx?ArticleID=240. [10] GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e170078. [11] ZOLLO R F. Fiber-reinforced concrete: an overview after 30 years of development[J]. Cement and Concrete Composites, 1997, 19(2): 107-122. [12] SAMAAN M, MIRMIRAN A, SHAHAWY M. Model of concrete confined by fiber composites[J]. Journal of Structural Engineering, 1998, 124(9): 1025-1031. [13] SONG P S, HWANG S. Mechanical properties of high-strength steel fiber-reinforced concrete[J]. Construction and Building Materials, 2004, 18(9): 669-67. [14] LEE J H, CHO B, CHOI E. Flexural capacity of fiber reinforced concrete with a consideration of concrete strength and fiber content[J]. Construction and Building Materials, 2017, 138: 222-231. [15] HEJAZI S M, SHEIKHZADEH M, ABTAHI S M, et al. A simple review of soil reinforcement by using natural and synthetic fibers[J]. Construction and Building Materials, 2012, 30: 100-116. [16] TANG C S, SHI B, GAO W, et al. Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil[J]. Geotextiles and Geomembranes, 2007, 25(3): 194-20. [17] YUAN B X, LI Z H, CHEN Y M, et al. Mechanical and microstructural properties of recycling granite residual soil reinforced with glass fiber and liquid-modified polyvinyl alcohol polymer[J]. Chemosphere, 2022, 286: 13165. [18] TANG C S, SHI B, ZHAO L Z. Interfacial shear strength of fiber reinforced soil[J]. Geotextiles and Geomembranes, 2010, 28(1): 54-62. [19] YANG E H, LI V C. Strain-hardening fiber cement optimization and component tailoring by means of a micromechanical model[J]. Construction and Building Materials, 2010, 24(2): 130-139. [20] WU B, QIU J S. Enhancing the hydrophobic PP fiber/cement matrix interface by coating nano-AlOOH to the fiber surface in a facile method[J]. Cement and Concrete Composites, 2022, 125: 104297. [21] YANG E H, LI V C. A micromechanical model for fiber cement optimization and component tailoring[J]. Civil & Enviromental Engineering, 2006, 24(2): 130-139. [22] YAO W, LI J, WU K R. Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction[J]. Cement and Concrete Research, 2003, 33(1): 27-30. [23] FADARE O O, OKOFFO E D. Covid-19 face masks: a potential source of microplastic fibers in the environment[J]. The Science of the Total Environment, 2020, 737: 140279. [24] WANG F M, LUO X Y, HAI Y, et al. Experimental investigation of face mask fiber-reinforced fully recycled coarse aggregate concrete[J]. Construction and Building Materials, 2024, 447: 138141. [25] SUN X P, JIANG Z Y, XU A, et al. Recycle of discarded masks in civil engineering: current status and future opportunities with silane coupling agent modified discarded masks[J]. Construction and Building Materials, 2022, 405: 133266. [26] AAL A A, ABDULLAH G M S, QADRI S M T, et al. Advances on concrete strength properties after adding polypropylene fibers from health personal protective equipment (PPE) of COVID-19: implication on waste management and sustainable environment[J]. Physics and Chemistry of the Earth, 2022, 128: 103260. [27] AJAM L, TRABELSI A, KAMMOUN Z. Valorisation of face mask waste in mortar[J]. Innovative Infrastructure Solutions, 2021, 7(1): 130. [28] RAN T, PANG J Y, LIU Y S, et al. Improving concrete fatigue resistance with COVID-19 rubber gloves: an innovative sustainable approach[J]. Case Studies in Construction Materials, 2022, 18: e01914. [29] KILMARTIN-LYNCH S, ROYCHAND R, SABERIAN M, et al. A sustainable approach on the utilisation of COVID-19 plastic based isolation gowns in structural concrete[J]. Case Studies in Construction Materials, 2021, 17: e01408. [30] KILMARTIN-LYNCH S, SABERIAN M, LI J, et al. Preliminary evaluation of the feasibility of using polypropylene fibres from COVID-19 single-use face masks to improve the mechanical properties of concrete[J]. Journal of Cleaner Production, 2021, 296: 126460. [31] AHMED W, LIM C W. Effective recycling of disposable medical face masks for sustainable green concrete via a new fiber hybridization technique[J]. Construction and Building Materials, 2022, 344: 128245. [32] SABERIAN M, LI J, KILMARTIN-LYNCH S, et al. Repurposing of COVID-19 single-use face masks for pavements base/subbase[J]. Science of the Total Environment, 2021, 769: 145527. [33] 闭东民, 孔纲强, 陈 庚, 等. 废弃口罩加筋固化土的强度特性与破坏模式[J]. 防灾减灾工程学报, 2022, 42(5): 993-998+1009. BI D M, KONG G Q, CHEN G, et al. Strength characteristics and failure mode of solidified soil reinforced by waste masks[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(5): 993-998+1009 (in Chinese). [34] 肖天祥, 高文华, 张宗堂, 等. 废弃口罩加筋的煤矸石路基粗粒土填料动力特性试验研究[J]. 防灾减灾工程学报, 2024, 44(2): 426-433. XIAO T X, GAO W H, ZHANG Z T, et al. Experimental study on dynamic characteristics of coal gangue roadbed filler reinforced with waste masks[J]. Journal of Disaster Prevention and Mitigation Engineering, 2024, 44(2): 426-433 (in Chinese). [35] MOHAN H T, JAYANARAYANAN K, MINI K M. A sustainable approach for the utilization of PPE biomedical waste in the construction sector[J]. Engineering Science and Technology, an International Journal, 2022, 32: 101060. [36] KONIORCZYK M, BEDNARSKA D, MASEK A, et al. Performance of concrete containing recycled masks used for personal protection during coronavirus pandemic[J]. Construction and Building Materials, 2022, 324: 12671. [37] LI Z P, ZHANG Z G, FEI M G, et al. Upcycling waste mask PP microfibers in Portland cement paste: surface treatment by graphene oxide[J]. Materials Letters, 2022, 318: 132238. [38] WIRYADI I G G, WIRAWAN I P A P, WIJAYA I M W, et al. The compressive strength of concrete with addition of single-use mask waste fiber[C]. Proceedings 5th International Conference of Sustainable Development (ICSD), 2021. 2022: 131-139. [39] IDREES M, AKBAR A, MOHAMED A M, et al. Recycling of waste facial masks as a construction material, a step towards sustainability[J]. Materials, 2022, 15(5): 1810. [40] WANG G, LI J, SABERIAN M, et al. Use of COVID-19 single-use face masks to improve the rutting resistance of asphalt pavement[J]. Science of the Total Environment, 20, 826: 154118. [41] 魏 欢, 郑 亮, 闫文俊, 等. 一次性医用口罩作纤维对沥青混合料路用性能的影响[J]. 建材世界, 2022, 43(3): 26-29. WEI H, ZHENG L, YAN W J, et al. Investigate on road performance of asphalt mixture using disposable medical masks as fibers[J]. The World of Building Materials, 2022, 43(3): 26-29 (in Chinese). [42] 马立纲, 葛生深, 赵增刚, 等. 一次性医用口罩改性沥青的流变性能研究[J]. 武汉理工大学学报(交通科学与工程版), 2022, 46(3): 519-522+527. MA L G, GE S S, ZHAO Z G, et al. Study on rheological properties of modified asphalt for disposable medical masks[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2022, 46(3): 519-522+527 (in Chinese). [43] ZHAO Z G, WU S P, LIU Q T, et al. Recycling waste disposable medical masks in improving the performance of asphalt and asphalt mixtures[J]. Construction and Building Materials, 2022, 337: 127621. [44] CASTELLOTE M, JIMÉNEZ-RELINQUE E, GRANDE M, et al. Face mask wastes as cementitious materials: a possible solution to a big concern[J]. Materials, 2022, 15(4): 1371. [45] 程培峰, 郑春萌, 张展铭, 等. 废旧口罩熔喷布对沥青及混合料性能影响研究[J]. 森林工程, 2021, 37(6): 126-134. CHENG P F, ZHENG C M, ZHANG Z M, et al. Study on the influence of melt-blown cloth of waste mask on the performance of asphalt and mixture[J]. Forest Engineering, 2021, 37(6): 126-134 (in Chinese). [46] ABDULLAH G M S, EL AAL A A. Assessment of the reuse of Covid-19 healthy personal protective materials in enhancing geotechnical properties of Najran’s soil for road construction: numerical and experimental study[J]. Journal of Cleaner Production, 2021, 320: 12877. [47] 张建伟, 李 想, 韩智光, 等. 废弃口罩加筋酶诱导碳酸盐沉淀固化砂土的抗剪强度特性[J]. 复合材料学报, 2024, 41(1): 426-437. ZHANG J W, LI X, HAN Z G, et al. Shear strength characteristics of sand solidified by enzyme-induced carbonate precipitation with waste face mask reinforcement[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 426-437 (in Chinese). [48] 谢嘉璇, 曾有旭, 储洪强, 等. 废弃口罩纤维增强砂浆的性能研究[J]. 混凝土, 2022(9): 152-155. XIE J X, ZENG Y X, CHU H Q, et al. Properties of disposable medical masks fiber reinforced mortar[J]. Concrete, 2022(9): 152-155 (in Chinese). [49] GOLDFEIN S. Fibrous reinforcement for Portland cement[J]. Modern Plastics, 1965, 42(8): 156-160. [50] WALTON P L, MAJUMDAR A J. Cement-based composites with mixtures of different types of fibres[J]. Composites, 1975, 6(5): 209-216. [51] KAKOOEI S, AKIL H M, JAMSHIDI M, et al. The effects of polypropylene fibers on the properties of reinforced concrete structures[J]. Construction and Building Materials, 2012, 27(1): 73-77. [52] KARAHAN O, ATI C D. The durability properties of polypropylene fiber reinforced fly ash concrete[J]. Materials & Design, 2011, 32(2): 1044-1049. [53] OSTERTAG C P, YI C K, VONDRAN G. Tensile strength enhancement in interground fiber cement composites[J]. Cement and Concrete Composites, 2001, 23(4/5): 419-425. [54] JIANG H T, CAI Y, LIU J. Engineering properties of soils reinforced by short discrete polypropylene fiber[J]. Journal of Materials in Civil Engineering, 2010, 22(12): 1315-1. [55] ABTAHI S M, SHEIKHZADEH M, HEJAZI S M. Fiber-reinforced asphalt-concrete: a review[J]. Construction and Building Materials, 2010, 24(6): 871-877. [56] FARAJ R H, SHERWANI A F H, DARAEI A. Mechanical, fracture and durability properties of self-compacting high strength concrete containing recycled polypropylene plastic particles[J]. Journal of Building Engineering, 2019, 25: 100808. [57] 中华人民共和国住房和城乡建设部. 混凝土结构工程施工质量验收规范: GB 50204—2015[S]. 北京: 中国建筑工业出版社, 2015. The Professional Standards Compilation Group of People’s Republic of China. Code for quality acceptance of concrete structure construction: GB 50204—2015[S]. Beijing: China Planning Press, 2015 (in Chinese). [58] RAN T, PANG J Y, ZOU J Q. An emerging solution for medical waste: reuse of COVID-19 protective suit in concrete[J]. Sustainability, 2022, 14(16): 10045. [59] 王德银, 唐朝生, 李 建, 等. 纤维加筋非饱和黏性土的剪切强度特性[J]. 岩土工程学报, 2013, 35(10): 1933-1940. WANG D Y, TANG C S, LI J, et al. Shear strength characteristics of fiber-reinforced unsaturated cohesive soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1933-1940 (in Chinese). [60] 熊 雨, 邓华锋, 彭 萌, 等. 四种人工合成纤维加筋黄土的抗剪特性[J]. 长江科学院院报, 2022, 39(1): 122-126+1. XIONG Y, DENG H F, PENG M, et al. Shear properties of loess reinforced with four synthetic fibers[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(1): 122-126+1 (in Chinese). [61] 张 嘎, 王 刚, 尹振宇, 等. 土的基本特性及本构关系[J]. 土木工程学报, 2020, 53(2): 105-118. ZHANG G, WANG G, YIN Z Y, et al. A critical review on the research of fundamental behavior and constitutive relationship of the soil[J]. China Civil Engineering Journal, 2020, 53(2): 105-118 (in Chinese). [62] 陈永辉, 赵维炳, 汪志强. 一个加筋复合土体的本构关系[J]. 水利学报, 2002, 33(12): 26-32. CHEN Y H, ZHAO W B, WANG Z Q. The constitutive relationship of reinforced soil[J]. Journal of Hydraulic Engineering, 2002, 33(12): 26-32 (in Chinese). [63] 陈永辉, 施建勇, 马文斌. 土工织物加筋堤坝复合有限元分析方法[J]. 水利学报, 2003, 34(1): 28-33. CHEN Y H, SHI J Y, MA W B. Composite FEM analysis on geotextile-reinforced embankment[J]. Journal of Hydraulic Engineering, 2003, 34(1): 28-33 (in Chinese). |
| [1] | ZHANG Zengqi, LI Siyi, LIU Xiaoming, MA Shanliang, SHAO Yang, CHEN Jie, DU Weijie. Research Progress in Synergistic Preparation of Magnesium Phosphate Cement by Multi-Source Solid Wastes [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1191-1207. |
| [2] | REN Caifu, WANG Dongmin, FANG Kuizhen, WANG Jixiang, ZHANG Xinlong, CHEN Wei. Properties and Hardening Mechanism of Solid Waste Based Grouting Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1328-1336. |
| [3] | WU Tingjie, WANG Chunyi, DU Xiangqin, YUAN Xuebing. Mechanical Properties and Microstructure of Rubber Cement Mortar under Static Loading [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1438-1447. |
| [4] | SU Jun, SI Yuan, CAI Xinhua, WANG Yamin. Influence of Steel Slag Powder on Basic Mechanical Properties of PE-ECC [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1367-1376. |
| [5] | WANG Ziyan, SUN Tao, OUYANG Gaoshang. Review on Performance Regulation of Phosphogypsum-Based Excess-Sulphate Slag Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1208-1226. |
| [6] | GUO Aili, ZHANG Shoukun, LIU Xue, LYU Maorong, LU Shuang. Comprehensive Review of Current Research on Circulating Fluidized Bed Ash [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1227-1242. |
| [7] | XIE Chen, CHEN Wei, WANG Hui, WANG Dongmin, LIU Yihui, LI Bo. Enhancement Mechanism of Performance of Slag-Based Cementitious Materials By Infiltrated Process [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1297-1305. |
| [8] | ZHAO Yingliang, ZHENG Yong, CUI Kai, SHEN Peiliang, TAO Yong, PAN Zhisheng. Effect of Highly Reactive Carbonated Steel Slag on Hydration and Mechanical Properties of Cement Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1306-1318. |
| [9] | MEI Wenzheng, GAO Peng, YU Chang, YUAN Hao, ZHOU Mingkai. Composite Reinforcement Effect of GGBFS-Sulfate on CFBFA-Based Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1337-1345. |
| [10] | DENG Kai, LI Huabing, YUAN Shuting, GUO Xiaolu. Environmental Impact Assessment of Resource Utilization of Incinerated Sewage Sludge Ash Used in Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1346-1356. |
| [11] | ZHAO Xiaoqing, JIANG Cheng, HUANG Bo, ZHAN Chunan, ZHOU Zimeng, ZHAO Mingrui, YANG Tianfeng. Mechanical Properties of Soda Residue-Fly Ash Stabilized Soil [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1504-1512. |
| [12] | LI Zuzhong, MAO Haotian, WANG Liang, WU Zhikuan, WEN Shuo, LIU Weidong. Optimization of Standard Cement Mix Ratio for Concrete Early-Strength Repair Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(3): 802-810. |
| [13] | FAN Lin, YANG Zhao, QI Xiaolong, DENG Fangqian. Tensile Properties of PP/PVA Hybrid Fiber Engineered Cementitious Composites Reinforced by SMAF [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(3): 811-820. |
| [14] | LIU Cheng, LIU Yiming, YE Qunshui, HU Tao. Shear Properties of Strain-Hardening Cement-Based Composites under Quasi-Static and Impact Loads [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(3): 821-833. |
| [15] | ZHANG Peng, WU Jingjiang, ZHANG Chengshi, WEI Xiaoxue, DAI Xiaobing. Flexural Properties and Microstructure of Nano-SiO2 and Hybrid Fiber Reinforced Epoxy Resin Cement-Based Repair Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(3): 834-841. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||