[1] 张秉宗, 贡 力, 杜强业, 等. 西北盐渍干寒地区聚丙烯纤维混凝土耐久性损伤试验研究[J]. 材料导报, 2022, 36(17): 108-114. ZHANG B Z, GONG L, DU Q Y, et al. Durability damage test of polypropylene fiber concrete in saline dry and cold area of northwest China[J]. Materials Review, 2022, 36(17): 108-114 (in Chinese). [2] 郝贠洪, 刘艳晨, 李永贵, 等. 聚丙烯纤维增强水泥复合材料抗冲蚀性能及冲蚀机制[J]. 复合材料学报, 2021, 38(3): 891-901. HAO Y H, LIU Y C, LI Y G, et al. Erosion resistance and erosion mechanism of polypropylene fiber reinforced cement composites[J]. Journal of Composite Materials, 2019, 38(3): 891-901 (in Chinese). [3] 王胜开, 朱志根, 刘家明. 聚丙烯纤维对膏体充填料流动性影响的分析[J]. 矿业研究与开发, 2022, 42(3): 102-108. WANG S K, ZHU Z G, LIU J M. Analysis of effect of polypropylene fiber on fluidity of paste fillers[J]. Mining Research and Development, 2022, 42(3): 102-108 (in Chinese). [4] 卢 浩, 晏长根, 贾卓龙, 等. 聚丙烯纤维加筋黄土的抗剪强度和崩解特性[J]. 交通运输工程学报, 2021, 21(2): 82-92. LU H, YAN C G, JIA Z L, et al. Shear strength and disintegration characteristics of polypropylene fiber reinforced loess[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 82-92 (in Chinese). [5] CUI K, XU L H, LI X F, et al. Fatigue life analysis of polypropylene fiber reinforced concrete under axial constant-amplitude cyclic compression[J]. Journal of Cleaner Production, 2021, 319. [6] 佟 钰, 刘 阳, 罗 超, 等. 聚丙烯纤维改性水泥土的力学性能研究[J]. 沈阳建筑大学学报(自然科学版), 2020, 36(3): 507-513. TONG Y, LIU Y, LUO C, et al. Study on mechanical properties of cement soil modified by polypropylene fiber[J]. Journal of Shenyang Jianzhu University (Natural Science Edition), 2019, 36(3): 507-513 (in Chinese). [7] 沈文峰, 王 亮, 孙 蕾, 等. 掺加聚丙烯纤维水泥砂浆在冲击荷载下的动态力学特性[J]. 塑料工业, 2020, 48(增刊1): 120-124. SHEN W F, WANG L, SUN L, et al. Dynamic mechanical properties of polypropylene fiber cement mortar under impact load[J]. Plastics Industry, 2019, 48(supplement 1): 120-124 (in Chinese). [8] YAN T, CHONG M, BEN Z, et al. Study and microanalysis on the effect of the addition of polypropylene fibres on the bending strength and carbonization resistance of manufactured sand concrete[J]. Polymers, 2023, 15(9): 2139. [9] 乔宏霞, 杨 安, 杨 博, 等. 基于威布尔分布下纳米碳酸钙改性混凝土寿命预测研究[J]. 工业建筑, 2022, 52(1): 174-179. QIAO H X, YANG A, YANG B, et al. Study on life prediction of nano-calcium carbonate modified concrete based on Weibull distribution[J]. Industrial Building, 2022, 52(1): 174-179 (in Chinese). [10] 杨 虹. 聚丙烯纤维胶粉轻骨料混凝土力学及抗冻性能试验研究[D].呼和浩特: 内蒙古农业大学, 2021. YANG H. Experimental study on mechanics and frost resistance of polypropylene fiber rubber powder lightweight aggregate concrete[D]. Hohhot: Inner Mongolia Agricultural University, 2021 (in Chinese). [11] 游秀菲. 多尺度聚丙烯纤维混凝土弯曲疲劳性能研究[D].重庆: 重庆大学, 2022. YOU X F. Research on flexural fatigue properties of multi-scale polypropylene fiber concrete[D]. Chongqing: Chongqing University, 2022 (in Chinese). [12] ABUSOGI M A, CHE Z M, AHMED M H, et al. Effect of polypropylene fibre on cementitious mortar early shrinkage cracking using the eccentric-ring test[J]. Frontiers in Materials, 2023. [13] 张雪松, 朱艳峰, 黄林冲. 聚丙烯纤维对泡沫混凝土性能的影响[J].新型建筑材料, 2019, 46(3): 140-142+147. ZHANG X S, ZHU Y F, HUANG L C. Effect of polypropylene fiber on properties of foamed concrete[J]. New Building Materials, 2019, 46(3): 140-142+147 (in Chinese). [14] 刘晓鹏. 聚丙烯纤维混凝土早期塑性抗拉强度研究[D]. 大连: 大连理工大学, 2021. LIU X P. Study on early plastic tensile strength of polypropylene fiber concrete[D]. Dalian: Dalian University of Technology, 2021 (in Chinese). [15] 张广泰, 陈 勇, 鲁海波, 等. 硫酸盐侵蚀作用下纤维锂渣混凝土裂缝的分形特征[J].工程科学学报, 2022, 44(2): 208-216. ZHANG G T, CHEN Y, LU H B, et al. Fractal characteristics of cracks in lithium fiber slag concrete under sulfate attack[J]. Journal of Engineering Science, 2022, 44(2): 208-216 (in Chinese). [16] JIANGUO L, JUNNI L, XIAOYI F, et al. Study on the mechanical properties and microstructure of fiber-reinforced concrete subjected to sulfate erosion[J]. Arabian Journal for Science and Engineering, 2022, 47(10): 13639-13653. [17] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009. Ministry of Housing and Urban Rural Development of the People’s Republic of China. Standard for test methods for long term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Construction Industry Press, 2009 (in Chinese). [18] 史天尧, 陈星宇, 张 敏, 等. 水泥基材料中氯离子结合机理及其影响因素研究进展[J]. 硅酸盐通报, 2021, 40(1): 13-24. SHI T Y, CHEN X Y, ZHANG M, et al. Research progress on chloride ion binding mechanism and its influencing factors in cement-based materials[J]. Bulletin of Silicate, 2021, 40(1): 13-24 (in Chinese). [19] 康春涛, 贡 力, 王忠慧, 等. 利用灰色残差GM(1,1)-Markov模型预测水工混凝土的劣化[J]. 水利水运工程学报, 2021(1): 95-103. KANG C T, G L, WANG Z H, et al. Prediction of deterioration of hydraulic concrete by grey residual GM(1,1)-Markov model[J]. Journal of Water Conservancy and Water Transport Engineering, 2021(1): 95-103 (in Chinese). [20] 徐存东, 王海若, 陈家豪, 等. 盐冻循环对混凝土力学性能的影响及寿命预测[J].水电能源科学, 2023, 41(9): 134-138. XU C D, WANG H R, CHEN J H, et al. Effect of salt-freezing cycle on mechanical properties and life prediction of concrete[J]. Journal of Hydroelectric Energy, 2023, 41(9): 134-138 (in Chinese). [21] 李金玉, 彭小平, 邓正刚, 等. 混凝土抗冻性的定量化设计[J]. 混凝土, 2000(12): 61-65. LI J Y, PENG X P, DENG Z G, et al. Quantitative design of frost resistance of concrete[J]. Concrete, 2000(12): 61-65 (in Chinese). [22] 李金玉. 冻融环境下混凝土结构的耐久性设计与施工[C]//混凝土结构耐久性设计与施工论文集. 中国水利水电科学研究院, 2004. LI J Y. Durability design and construction of concrete structures in freeze-thaw environment[C]//Proceedings on Durability Design and Construction of Concrete Structures. China Research Institute of Water Resources and Hydropower, 2004 (in Chinese). |