[1] CHALEE W, JATURAPITAKKUL C. Effects of W/B ratios and fly ash finenesses on chloride diffusion coefficient of concrete in marine environment[J]. Materials and Structures, 2009, 42(4): 505-514. [2] KUMAR M P, MINI K M, RANGARAJAN M. Ultrafine GGBS and calcium nitrate as concrete admixtures for improved mechanical properties and corrosion resistance[J]. Construction and Building Materials, 2018, 182: 249-257. [3] 周立霞, 王起才, 张粉芹. 矿物掺合料和孔结构对混凝土抗渗性的影响[J]. 水力发电学报, 2010, 29(3): 196-201. ZHOU L X, WANG Q C, ZHANG F Q. Effect of mineral admixture and pore structure on the permeability of concrete[J]. Journal of Hydroelectric Engineering, 2010, 29(3): 196-201 (in Chinese). [4] ALTOUBAT S, TALHA J M, LEBLOUBA M, et al. Effectiveness of fly ash on the restrained shrinkage cracking resistance of self-compacting concrete[J]. Cement and Concrete Composites, 2017, 79: 9-20. [5] 刘仍光. 水泥-矿渣复合胶凝材料的水化机理与长期性能[D]. 北京: 清华大学, 2013: 101-102. LIU R G. Hydration mechanism and long-term performance of cement-slag complex cementitious materials[D]. Beijing: Tsinghua University, 2013: 101-102 (in Chinese). [6] CHEN W G, ZHU H T, HE Z H, et al. Experimental investigation on chloride-ion penetration resistance of slag containing fiber-reinforced concrete under drying-wetting cycles[J]. Construction and Building Materials, 2021, 274: 121829. [7] THOMAS M D A, HOOTON R D, SCOTT A, et al. The effect of supplementary cementitious materials on chloride binding in hardened cement paste[J]. Cement and Concrete Research, 2012, 42(1): 1-7. [8] MOFFATT E G, THOMAS M D A, FAHIM A. Performance of high-volume fly ash concrete in marine environment[J]. Cement and Concrete Research, 2017, 102: 127-135. [9] 曾俊杰, 王胜年, 范志宏, 等. 偏高岭土改善海工混凝土抗氯离子侵蚀性的效果及机理[J]. 武汉理工大学学报, 2015, 37(4): 22-28. ZENG J J, WANG S N, FAN Z H, et al. Improvement effect and mechanism of metakaolin on marine concrete chloride penetration resistance[J]. Journal of Wuhan University of Technology, 2015, 37(4): 22-28 (in Chinese). [10] SHEN W G, YANG Z G, CAO L H, et al. Characterization of manufactured sand: particle shape, surface texture and behavior in concrete[J]. Construction and Building Materials, 2016, 114: 595-601. [11] 黄志刚, 徐志华, 李北星, 等. 机制砂片状颗粒对砂浆和混凝土性能与微观结构的影响[J]. 硅酸盐通报, 2022, 41(6): 1981-1989. HUANG Z G, XU Z H, LI B X, et al. Effects of flake particles in manufactured sand on properties and microstructure of mortar and concrete[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 1981-1989 (in Chinese). [12] 王雪艳, 刘明辉, 刘 萱, 等. 沙漠砂+机制砂混凝土力学性能及碳排放研究[J]. 土木工程学报, 2022, 55(2): 23-30. WANG X Y, LIU M H, LIU X, et al. Study on mechanical properties and carbon emissions of desert sand and machine-made sand concrete[J]. China Civil Engineering Journal, 2022, 55(2): 23-30 (in Chinese). [13] 罗发胜, 李 彬, 杜俊朋, 等. 骨料种类与级配对路面混凝土耐磨性能的影响[J]. 硅酸盐通报, 2022, 41(6): 1963-1972+2006. LUO F S, LI B, DU J P, et al. Effects of type and gradation of aggregate on wear resistance of road concrete[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 1963-1972+2006 (in Chinese). [14] 张高展, 王宇譞, 杨 军, 等. 骨料对混凝土中氯离子传输特性的影响进展[J]. 功能材料, 2022, 53(8): 8036-8044. ZHANG G Z, WANG Y X, YANG J, et al. Review on chloride ion transport behavior in concrete materials: the influence of aggregate[J]. Journal of Functional Materials, 2022, 53(8): 8036-8044 (in Chinese). [15] WANG Y Z, WU L J, WANG Y C, et al. Effects of coarse aggregates on chloride diffusion coefficients of concrete and interfacial transition zone under experimental drying-wetting cycles[J]. Construction and Building Materials, 2018, 185: 230-245. [16] 郑建军, 梁云滢, 邵 林. 混凝土氯离子扩散系数预测的格构模型[J]. 建筑材料学报, 2009, 12(6): 716-719. ZHENG J J, LIANG Y Y, SHAO L. A lattice model for predicting the chloride diffusivity of concrete[J]. Journal of Building Materials, 2009, 12(6): 716-719 (in Chinese). [17] 吴 憾. 基于神经网络的混凝土抗氯离子侵蚀性能研究及寿命预测[D]. 广州: 华南理工大学, 2019: 15-16. WU H. Study on chloride ion corrosion resistance and life prediction of concrete based on neural network[D]. Guangzhou: South China University of Technology, 2019: 15-16 (in Chinese). [18] TENG S, LIM T Y D, SABET D B. Durability and mechanical properties of high strength concrete incorporating ultra fine ground granulated blast-furnace slag[J]. Construction and Building Materials, 2013, 40: 875-881. [19] 勾密峰, 黄 飞, 管学茂. 矿渣对氯离子的固化作用[J]. 材料导报, 2014, 28(10): 120-122+144. GOU M F, HUANG F, GUAN X M. The binding effect of slag on the chloride ions[J]. Materials Reports, 2014, 28(10): 120-122+144 (in Chinese). [20] HOOTON R D, BENTZ D P, GARBOCZI E J, et al. Multi-scale microstructural modeling of concrete diffusivity: identification of significant varibles[J]. Cement, Concrete and Aggregates, 1998, 20(1): 129-139. [21] CARÉ S, HERVÉ E. Application of a n-phase model to the diffusion coefficient of chloride in mortar[J]. Transport in Porous Media, 2004, 56(2): 119-135. [22] METALSSI O O, TOUHAMI R R, BARBERON F, et al. Understanding the degradation mechanisms of cement-based systems in combined chloride-sulfate attack[J]. Cement and Concrete Research, 2023, 164: 107065. |