[1] 王家滨, 王 斌, 张凯峰, 等. 盐冻损伤喷射混凝土衬砌结构氯离子扩散及其模型[J]. 材料导报, 2020, 34(16): 16055-16061. WANG J B, WANG B, ZHANG K F, et al. Chloride diffusion and its model of shotcrete lining structure with salt-frost degradation[J]. Materials Reports, 2020, 34(16): 16055-16061 (in Chinese). [2] 姜文镪, 刘清风. 冻融循环下混凝土中氯离子传输研究进展[J]. 硅酸盐学报, 2020, 48(2): 258-272. JIANG W Q, LIU Q F. Chloride transport in concrete subjected to freeze-thaw cycles: a short review[J]. Journal of the Chinese Ceramic Society, 2020, 48(2): 258-272 (in Chinese). [3] CHEN X D, FU F, WANG H, et al. A multi-phase mesoscopic simulation model for the long-term chloride ingress and electrochemical chloride extraction[J]. Construction and Building Materials, 2021, 270: 121826. [4] 陈宣东, 刘光焰, 刘恺德, 等. 海工结构服役寿命及保护层开裂模式细观数值模拟[J]. 材料科学与工程学报, 2021, 39(5): 776-782. CHEN X D, LIU G Y, LIU K D, et al. Numerical simulation of service life and protective layer cracking pattern of marine structures[J]. Journal of Materials Science and Engineering, 2021, 39(5): 776-782 (in Chinese). [5] 吴洁琼, 许见超, 刁 波, 等. 疲劳损伤RC梁氯离子腐蚀后疲劳性能和氯离子扩散性试验研究[J]. 建筑结构学报, 2022, 43(9): 201-209. WU J Q, XU J C, DIAO B, et al. Experimental study on fatigue behavior and chloride diffusivity of fatigue damaged RC beams after chloride attack[J]. Journal of Building Structures, 2022, 43(9): 201-209 (in Chinese). [6] CHEN X D, YU A P, LIU G Y, et al. A multi-phase mesoscopic simulation model for the diffusion of chloride in concrete under freeze-thaw cycles[J]. Construction and Building Materials, 2020, 265: 120223. [7] ZHANG X H, WANG L, ZHANG J R. Mechanical behavior and chloride penetration of high strength concrete under freeze-thaw attack[J]. Cold Regions Science and Technology, 2017, 142: 17-24. [8] WANG Y, AN M Z, YU Z R, et al. Experimental and cellular-automata-based analysis of chloride ion diffusion in reactive powder concrete subjected to freeze-thaw cycling[J]. Construction and Building Materials, 2018, 172: 760-769. [9] JIANG W Q, SHEN X H, XIA J, et al. A numerical study on chloride diffusion in freeze-thaw affected concrete[J]. Construction and Building Materials, 2018, 179: 553-565. [10] WANG L C, UEDA T. Mesoscopic simulation of chloride ions diffusion in frost-damaged concrete[J]. International Journal of Modelling, Identification and Control, 2009, 7(2): 148. [11] 岳 强, 王 丽, 刘福胜, 等. 基于真实细观模型的再生混凝土破坏数值研究[J]. 建筑材料学报, 2016, 19(2): 221-228. YUE Q, WANG L, LIU F S, et al. Numerical study on damage process of recycled aggregate concrete by real meso-scale model[J]. Journal of Building Materials, 2016, 19(2): 221-228 (in Chinese). [12] DU X L, JIN L, MA G W. A meso-scale numerical method for the simulation of chloride diffusivity in concrete[J]. Finite Elements in Analysis and Design, 2014, 85: 87-100. [13] 王 月, 安明喆, 余自若, 等. 冻融循环作用下活性粉末混凝土中的氯离子分布及扩散系数[J]. 建筑材料学报, 2016, 19(5): 810-815+820. WANG Y, AN M Z, YU Z R, et al. Chloride ion distribution and diffusion coefficient of reactive powder concrete under freeze-thaw cycling[J]. Journal of Building Materials, 2016, 19(5): 810-815+820 (in Chinese). [14] 洪 雷, 唐晓东. 冻融循环及龄期对混凝土氯离子渗透性的影响[J]. 建筑材料学报, 2011, 14(2): 254-256+262. HONG L, TANG X D. Influnence of freezing-thawing cycles and curing age on chloride permeability of concrete[J]. Journal of Building Materials, 2011, 14(2): 254-256+262 (in Chinese). [15] 白 敏, 牛荻涛, 姜桂秀, 等. 冻融循环后钢纤维混凝土氯离子侵蚀性能研究[J]. 硅酸盐通报, 2015, 34(9): 2506-2510+2524. BAI M, NIU D T, JIANG G X, et al. Chloride corrosion resistance of steel fiber reinforced concrete after cycles of freezing and thawing[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(9): 2506-2510+2524 (in Chinese). [16] 李林洁, 刘清风. 冻融循环下混凝土内部结冰及氯离子传输规律的数值研究[J]. 硅酸盐学报, 2022, 50(8): 2245-2256. LI L J, LIU Q F. Numerical analysis on freezing rate and chloride transport in concrete subjected to freeze-thaw cycles[J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2245-2256 (in Chinese). [17] 张 宏, 朱海威, 杨海成, 等. 冰冻海水环境下混凝土表面涂层长期暴露试验研究[J]. 硅酸盐通报, 2022, 41(4): 1301-1307. ZHANG H, ZHU H W, YANG H C, et al. Long-term exposure test of concrete surface coating in frozen seawater environment[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1301-1307 (in Chinese). [18] 王胜年, 曾俊杰, 范志宏. 基于长期暴露试验的海工高性能混凝土耐久性分析[J]. 土木工程学报, 2021, 54(10): 82-89. WANG S N, ZENG J J, FAN Z H. Analysis on durability of marine HPC based on long-term exposure experiment[J]. China Civil Engineering Journal, 2021, 54(10): 82-89 (in Chinese). [19] 鲍玖文, 魏佳楠, 张 鹏, 等. 海洋环境下混凝土抗氯离子侵蚀的相似性研究进展[J]. 硅酸盐学报, 2020, 48(5): 689-704. BAO J W, WEI J N, ZHANG P, et al. Research progress of similarity of resistance to chloride ingress into concrete exposed to marine environment[J]. Journal of the Chinese Ceramic Society, 2020, 48(5): 689-704 (in Chinese). [20] CHEN X D, ZHANG Q. Multiphysics and multiphase mesoscopic study on electrochemical corrosion of reinforcement caused by chloride salt[J]. Construction and Building Materials, 2024, 411: 134241. [21] 周双喜, 韩 震, 魏 星, 等. 骨料含量和界面区体积对混凝土氯离子扩散性能的影响[J]. 建筑材料学报, 2018, 21(3): 351-357. ZHOU S X, HAN Z, WEI X, et al. Influence of aggregate contents and volume of interfacial transition zone on chloride ion diffusion properties of concrete[J]. Journal of Building Materials, 2018, 21(3): 351-357 (in Chinese). [22] 李 宁, 金祖权, 于 泳, 等. 混凝土真实细观模型的生成及氯离子传输的数值模拟[J]. 土木与环境工程学报(中英文), 2019, 41(6): 71-79. LI N, JIN Z Q, YU Y, et al. Generation of real mesoscopic model of concrete and numerical simulation of chloride ions transportation[J]. Journal of Civil and Environmental Engineering, 2019, 41(6): 71-79 (in Chinese). [23] 余红发, 孙 伟, 李美丹. 荷载对混凝土在腐蚀-冻融作用下强度的影响[J]. 哈尔滨工业大学学报, 2010, 42(2): 297-301. YU H F, SUN W, LI M D. Effect of flexural stress on strength development of concrete subjected to combined actions of freezing-thawing cycles and chemical attack[J]. Journal of Harbin Institute of Technology, 2010, 42(2): 297-301 (in Chinese). [24] YU H F, MA H X, YAN K. An equation for determining freeze-thaw fatigue damage in concrete and a model for predicting the service life[J]. Construction and Building Materials, 2017, 137: 104-116. [25] 黄庆华, 周承宗, 顾祥林, 等. 混凝土界面过渡区水分传输特性试验研究[J]. 建筑结构学报, 2019, 40(1): 174-180. HUANG Q H, ZHOU C Z, GU X L, et al. Experimental study on moisture transport property of interfacial transition zone in concrete[J]. Journal of Building Structures, 2019, 40(1): 174-180 (in Chinese). [26] PAN Z C, CHEN A R, RUAN X. Spatial variability of chloride and its influence on thickness of concrete cover: a two-dimensional mesoscopic numerical research[J]. Engineering Structures, 2015, 95: 154-169. [27] 陈宣东, 虞爱平, 刘光焰, 等. 海工结构服役寿命预测细观数值模拟研究[J]. 建筑材料学报, 2019, 22(6): 894-900. CHEN X D, YU A P, LIU G Y, et al. Meso-numerical simulation of service life prediction for marine structures[J]. Journal of Building Materials, 2019, 22(6): 894-900 (in Chinese). [28] ZHANG P, WITTMANN F H, VOGEL M, et al. Influence of freeze-thaw cycles on capillary absorption and chloride penetration into concrete[J]. Cement and Concrete Research, 2017, 100: 60-67. [29] TIAN Y, TIAN Z S, JIN N G, et al. A multiphase numerical simulation of chloride ions diffusion in concrete using electron microprobe analysis for characterizing properties of ITZ[J]. Construction and Building Materials, 2018, 178: 432-444. [30] 陈宣东, 刘光焰, 虞爱平, 等. 基于二维混凝土随机细观模型氯离子扩散数值模拟[J]. 材料科学与工程学报, 2020, 38(4): 669-673. CHEN X D, LIU G Y, YU A P, et al. Numerical simulation of chloride diffusion based on 2D concrete random mesoscopic model[J]. Journal of Materials Science and Engineering, 2020, 38(4): 669-673 (in Chinese). [31] LIU Q F, LI L Y, EASTERBROOK D, et al. Multi-phase modelling of ionic transport in concrete when subjected to an externally applied electric field[J]. Engineering Structures, 2012, 42: 201-213. |