[1] 秦 涛, 韩方玉, 光鉴淼, 等. 铁路桥梁用高性能混凝土的力学性能试验研究[J]. 混凝土, 2021(3): 134-136. QIN T, HAN F Y, GUANG J M, et al. Experimental study on mechanical properties of high performance concrete for railway bridges[J]. Concrete, 2021(3): 134-136 (in Chinese). [2] 毛伟琦, 胡雄伟. 中国大跨度桥梁最新进展与展望[J]. 桥梁建设, 2020, 50(1): 13-19. MAO W Q, HU X W. Latest developments and prospects for long-span bridges in China[J]. Bridge Construction, 2020, 50(1): 13-19 (in Chinese). [3] 安明喆, 苏 阳, 王 月, 等. 粗骨料石粉含量对C50高性能混凝土性能的影响研究[J]. 中国铁道科学, 2013, 34(4): 27-32. AN M Z, SU Y, WANG Y, et al. Effect of the stone powder content in coarse aggregate on the properties of C50 high performance concrete[J]. China Railway Science, 2013, 34(4): 27-32 (in Chinese). [4] LIU J M, OU Z W, MO J C, et al. Effectiveness of saturated coral aggregate and shrinkage reducing admixture on the autogenous shrinkage of ultrahigh performance concrete[J]. Advances in Materials Science and Engineering, 2017, 2017: 1-11. [5] FRANESQUI M A, YEPES J, GARCíA-GONZÁLEZ C. Improvement of moisture damage resistance and permanent deformation performance of asphalt mixtures with marginal porous volcanic aggregates using crumb rubber modified bitumen[J]. Construction and Building Materials, 2019, 201: 328-339. [6] 孙美娟, 姚丕强, 黄 雄, 等. 沸石对海水拌合超高性能混凝土性能的影响[J]. 硅酸盐通报, 2022, 41(5): 1649-1655. SUN M J, YAO P Q, HUANG X, et al. Effect of zeolite on properties of seawater mixing ultra-high performance concrete (UHPC)[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1649-1655 (in Chinese). [7] 刘 玮, 张 玉, 李 珠, 等. 膨胀珍珠岩内养护混凝土抗压强度增长机制及数学模型的建立[J]. 复合材料学报, 2022, 39(11): 5423-5435. LIU W, ZHANG Y, LI Z, et al. Growth mechanism and mathematical model of compressive strength of expanded perlite internal curing concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5423-5435 (in Chinese). [8] 尹天一, 王志宇, 余 睿, 等. 多孔陶粒对超高性能混凝土的性能影响[J]. 混凝土, 2022(9): 137-140+148. YIN T Y, WANG Z Y, YU R, et al. Effect of porous ceramsite on properties of ultra-high performance concrete[J]. Concrete, 2022(9): 137-140+148 (in Chinese). [9] 赵海军, 魏爱华, 张家祥, 等. 基于氮气吸附法和压汞法的玄武岩孔隙结构特征及其对储层渗透性的影响[J]. 第四纪研究, 2023, 43(2): 560-572. ZHAO H J, WEI A H, ZHANG J X, et al. Microscopic pore structure characteristics of basalt and its influence on reservoir permeability based on nitrogen adsorption and mercury injection[J]. Quaternary Sciences, 2023, 43(2): 560-572 (in Chinese). [10] 霍泳霖, 霍冀川, 张行泉, 等. 玄武岩的开发利用进展[J]. 材料导报, 2022, 36(6): 113-123. HUO Y L, HUO J C, ZHANG X Q, et al. Development and utilization of basalt[J]. Materials Reports, 2022, 36(6): 113-123 (in Chinese). [11] 范 倩, 马健萍, 何伟杰. 多孔吸水玄武岩对沥青混合料水稳定性能影响机理研究[J]. 公路, 2020, 65(1): 212-216. FAN Q, MA J P, HE W J. Study on influence mechanism of porous water-absorbing basalt on water stability of asphalt mixture[J]. Highway, 2020, 65(1): 212-216 (in Chinese). [12] 张 璐. 玄武岩弃渣固废利用的技术应用[J]. 公路, 2020, 65(12): 197-198. ZHANG L. Technical application of solid waste utilization of basalt waste slag[J]. Highway, 2020, 65(12): 197-198 (in Chinese). [13] 杨医博, 岳晓东, 姚丁语, 等. 碱渣内养护剂对高强高性能混凝土自收缩及早期抗裂性能的影响及机理分析[J]. 材料导报, 2022, 36(12): 91-96. YANG Y B, YUE X D, YAO D Y, et al. Effect of soda residue internal curing agent on autogenous shrinkage and early crack resistance of high-strength and high-performance concrete and its mechanism analysis[J]. Materials Reports, 2022, 36(12): 91-96 (in Chinese). [14] 中华人民共和国住房和城乡建设部. 普通混凝土拌合物性能试验方法标准: GB/T 50080—2016[S]. 北京: 中国建筑工业出版社, 2017. Ministry of Housing and Urban-Rural Development, People’s Republic of China. Performance test method standard of ordinary concrete mixture: GB/T 50080—2016[S]. Beijing: China Architecture and Construction Press, 2017 (in Chinese). [15] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019. Ministry of Housing and Urban-Rural Development, State Administration for Market Regulation, PRC. Test method standard for physical and mechanical properties of concrete: GB/T 50081—2019[S]. Beijing: China Architecture and Construction Press, 2019 (in Chinese). [16] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009. Ministry of Housing and Urban-Rural Development, People’s Republic of China. Standard of test method for long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture and Construction Press, 2009 (in Chinese). [17] XU F M, LIN X S, ZHOU A N, et al. Effects of recycled ceramic aggregates on internal curing of high performance concrete[J]. Construction and Building Materials, 2022, 322: 126484. [18] 孔祥明, 张珍林. 高吸水性树脂对高强混凝土自收缩的减缩机理[J]. 硅酸盐学报, 2014, 42(2): 150-155. KONG X M, ZHANG Z L. Shrinkage-reducing mechanism of super-absorbent polymer in high-strength concrete[J]. Journal of the Chinese Ceramic Society, 2014, 42(2): 150-155 (in Chinese). [19] 崔 溦, 冀天竹, 吴甲一. 热膨胀系数对早期混凝土性态影响试验及数值模拟[J]. 同济大学学报(自然科学版), 2016, 44(3): 355-361+401. CUI W, JI T Z, WU J Y. Experimental study and numerical simulation for the effect of thermal expansion coefficient on the behavior of early concrete[J]. Journal of Tongji University (Natural Science), 2016, 44(3): 355-361+401 (in Chinese). [20] WU L M, FARZADNIA N, SHI C J, et al. Autogenous shrinkage of high performance concrete: a review[J]. Construction and Building Materials, 2017, 149: 62-75. [21] 劳家荣, 黄忠财, 郭寅川, 等. SAP内养生路面混凝土收缩性能及力学性能研究[J]. 硅酸盐通报, 2021, 40(2): 676-682. LAO J R, HUANG Z C, GUO Y C, et al. Shrinkage and mechanical properties of internal curing pavement concrete with SAP[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(2): 676-682 (in Chinese). [22] 王 瑶, 徐亦冬, 曾鞠庆, 等. 氧化石墨烯对水泥基复合材料自收缩的影响[J]. 功能材料, 2020, 51(3): 3108-3113. WANG Y, XU Y D, ZENG J Q, et al. Influence of graphene oxide on autogenous shrinkage of cement-based composites[J]. Journal of Functional Materials, 2020, 51(3): 3108-3113 (in Chinese). [23] MEHTA P K. Concrete: microstructure, properties, and materials[M]. New York: Mc Graw-Hill Education, 2016: 24-26. |