[1] 肖建庄, 邓 琪, 夏 冰. 混凝土制备低碳化演进与展望[J]. 建筑科学与工程学报, 2022, 39(5): 1-12. XIAO J Z, DENG Q, XIA B. Evolution and prospect of low carbonization of concrete preparation[J]. Journal of Architecture and Civil Engineering, 2022, 39(5): 1-12 (in Chinese). [2] 邵建峰, 姚绍武, 张文彬, 等. 高品质机制砂大规模生产工艺和质量控制技术研究[J]. 混凝土, 2013(5): 144-146+150. SHAO J F, YAO S W, ZHANG W B, et al. Research of mass production technology and quality control of superior quality manufactured-sand[J]. Concrete, 2013(5): 144-146+150 (in Chinese). [3] 杨 鲁, 李化建, 谢永江, 等. 高速铁路灌注桩混凝土工作性能评价指标研究[J]. 混凝土, 2012(1): 116-118. YANG L, LI H J, XIE Y J, et al. Workability evaluating index of the high-speed railway pile concrete[J]. Concrete, 2012(1): 116-118 (in Chinese). [4] 王 超, 田 波, 孙 涛, 等. 建立新拌水泥混凝土流变模型的试验方法[J]. 公路, 2014, 59(1): 210-214. WANG C, TIAN B, SUN T, et al. Test method for establishing rheological model of fresh cement concrete[J]. Highway, 2014, 59(1): 210-214 (in Chinese). [5] 卢 睿, 朱大勇, 詹炳根. 玄武岩纤维自密实混凝土流变性能研究[J]. 合肥工业大学学报(自然科学版), 2015, 38(9): 1249-1253. LU R, ZHU D Y, ZHAN B G. Study of rheological properties of basalt fiber reinforced self-consolidating concrete[J]. Journal of Hefei University of Technology (Natural Science), 2015, 38(9): 1249-1253 (in Chinese). [6] 王复生. 水泥混凝土统一流变模型[J]. 武汉建材学院学报, 1984, 6(1): 67-70. WANG F S. Unified rheological model of cement concrete[J]. Journal of Wuhan University of Technology, 1984, 6(1): 67-70 (in Chinese). [7] 黎梦圆, 刘 宇, 韩建国, 等. 砂率与浆骨比对大流动性混凝土新拌性能的影响[J]. 硅酸盐学报, 2020, 48(7): 1107-1113. LI M Y, LIU Y, HAN J G, et al. Influences of sand ratio and paste aggregate ratio on fresh properties of high-fluidity concrete[J]. Journal of the Chinese Ceramic Society, 2020, 48(7): 1107-1113 (in Chinese). [8] 季 韬, 李 锋, 庄一舟, 等. 机制砂比表面积对混凝土性能的影响[J]. 混凝土, 2011(2): 80-82. JI T, LI F, ZHUANG Y Z, et al. Effect of specific surface area of manufactured sand on concrete behaviors[J]. Concrete, 2011(2): 80-82 (in Chinese). [9] 高瑞军, 吴 浩, 王 玲, 等. 外掺机制砂石粉对水泥基材料流变性能的影响及机理[J]. 硅酸盐通报, 2019, 38(4): 1080-1085. GAO R J, WU H, WANG L, et al. Effect and mechanism of machine-made sand stone powder on rheological properties of cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(4): 1080-1085 (in Chinese). [10] ROUSSEL N. A thixotropy model for fresh fluid concretes: theory, validation and applications[J]. Cement and Concrete Research, 2006, 36(10): 1797-1806. [11] WALLEVIK J E. Relationship between the Bingham parameters and slump[J]. Cement and Concrete Research, 2006, 36(7): 1214-1221. [12] WALLEVIK O H, WALLEVIK J E. Rheology as a tool in concrete science: the use of rheographs and workability boxes[J]. Cement and Concrete Research, 2011, 41(12): 1279-1288. [13] HOCEVAR A, KAVCIC F, BOKAN-BOSILIJKOV V, et al. Rheological parameters of fresh concrete-comparison of rheometers[J]. Journal of the Croatian Association of Civil Engineers, 2013, 65(2): 99-109. [14] TANG G H, WANG S B, YE P X, et al. Bingham fluid simulation with the incompressible lattice Boltzmann model[J]. Journal of Non-Newtonian Fluid Mechanics, 2011, 166(1/2): 145-151. [15] GOĿASZEWSKI J, SZWABOWSKI J. Influence of superplasticizers on rheological behaviour of fresh cement mortars[J]. Cement and Concrete Research, 2004, 34(2): 235-248. [16] YEN T, TANG C W, CHANG C S, et al. Flow behaviour of high strength high-performance concrete[J]. Cement and Concrete Composites, 1999, 21(5/6): 413-424. [17] RAHMAN M K, BALUCH M H, MALIK M A. Thixotropic behavior of self compacting concrete with different mineral admixtures[J]. Construction and Building Materials, 2014, 50: 710-717. [18] LOMBOY G R, WANG X H, WANG K J. Rheological behavior and formwork pressure of SCC, SFSCC, and NC mixtures[J]. Cement and Concrete Composites, 2014, 54: 110-116. [19] 周秀文. 灰色关联度的研究与应用[D]. 长春: 吉林大学, 2007. ZHOU X W. Research and application of grey correlation degree[D]. Changchun: Jilin University, 2007 (in Chinese). |