[1] ZHOU M, LU W, SONG J W, et al. Application of ultra-high performance concrete in bridge engineering[J]. Construction and Building Materials, 2018, 186: 1256-1267. [2] DE S A F, RIBEIRO C C, DA S P J D, et al. Influence of adding discontinuous and dispersed carbon fiber waste on concrete performance[J]. Journal of Cleaner Production, 2020, 273: 122920. [3] ZHANG P, ZHENG Y X, WANG K J, et al. A review on properties of fresh and hardened geopolymer mortar[J]. Composites Part B: Engineering, 2018, 152: 79-95. [4] HACHEMI S, KHATTAB M, BENZETTA H. Enhancing the performance of concrete after exposure to high temperature by coarse and fine waste fire brick: an experimental study[J]. Construction and Building Materials, 2023, 368: 130356. [5] 杨 娟, 朋改非. 钢纤维类型对超高性能混凝土高温爆裂性能的影响[J]. 复合材料学报, 2018, 35(6): 1599-1608. YANG J, PENG G F. Influence of different types of steel fiber on explosive spalling behavior of ultra-high-performance concrete exposed to high temperature[J]. Acta Materiae Compositae Sinica, 2018, 35(6): 1599-1608 (in Chinese). [6] 余江滔, 史天成, 郁 颉, 等. 高性能纤维增强混凝土与筋材复合体系拉伸性能研究[J]. 同济大学学报(自然科学版), 2021, 49(6): 825-833+890. YU J T, SHI T C, YU J, et al. Experimental study of tensile properties of composite system of high performance concrete and reinforcements[J]. Journal of Tongji University (Natural Science), 2021, 49(6): 825-833+890 (in Chinese). [7] BAO H, YU M, CHI Y, et al. Performance evaluation of steel-polypropylene hybrid fiber reinforced concrete under supercritical carbonation[J]. Journal of Building Engineering, 2021, 43: 103159. [8] KOČí V, VEJMELKOVÁ E, KOŇÁKOVÁ D, et al. Basic physical, mechanical, thermal and hygric properties of reactive powder concrete with basalt and polypropylene fibers after high-temperature exposure[J]. Construction and Building Materials, 2023, 374: 130922. [9] 元成方, 赵 军. 聚丙烯纤维混凝土的高温损伤机理[J]. 材料科学与工程学报, 2017, 35(1): 37-40+56. YUAN C F, ZHAO J. Damage mechanism of polypropylene fiber reinforced concrete exposed to high temperature[J]. Journal of Materials Science and Engineering, 2017, 35(1): 37-40+56 (in Chinese). [10] SU Q, XU J M. Durability and mechanical properties of rubber concrete incorporating basalt and polypropylene fibers: experimental evaluation at elevated temperatures[J]. Construction and Building Materials, 2023, 368: 130445. [11] 李趁趁, 魏非凡, 刘超伟, 等. 高温后BFRP筋与纤维混凝土黏结性能[J]. 铁道科学与工程学报, 2023, 20(8): 3014-3025. LI C C, WEI F F, LIU C W, et al. Bond performance between BFRP bars and fiber reinforced concrete exposed to high temperature[J]. Journal of Railway Science and Engineering, 2023, 20(8): 3014-3025 (in Chinese). [12] 杨海峰, 杨焱茜, 王玉梅, 等. 高温后不同冷却方式下的混凝土钢筋粘结性能[J]. 土木与环境工程学报(中英文), 2021, 43(5): 94-100. YANG H F, YANG Y X, WANG Y M, et al. Bond performance of concrete-steel rebar under different cooling ways after high temperature[J]. Journal of Civil and Environmental Engineering, 2021, 43(5): 94-100 (in Chinese). [13] 吴海林, 郭金雨, 张 玉. 混杂纤维混凝土抗压强度正交试验研究[J]. 科学技术与工程, 2022, 22(32): 14370-14378. WU H L, GUO J Y, ZHANG Y. Orthogonal experimental study on compressive strength of hybrid fiber reinforced concrete[J]. Science Technology and Engineering, 2022, 22(32): 14370-14378 (in Chinese). [14] PENG G F, BIAN S H, GUO Z Q, et al. Effect of thermal shock due to rapid cooling on residual mechanical properties of fiber concrete exposed to high temperatures[J]. Construction and Building Materials, 2008, 22(5): 948-955. [15] LI Q T, XIA H R, YUAN G L, et al. Experimental study on the free expansion deformation of concrete during the cooling process after being heated to high temperature[J]. Construction and Building Materials, 2022, 337: 127617. [16] 任纬航. 不同冷却制度下混凝土高温损伤机理的研究[D]. 杨凌: 西北农林科技大学, 2015. REN W H. Study on high temperature damage mechanism of concrete under different cooling systems[D]. Yangling: Northwest A&F University, 2015 (in Chinese). [17] ZHAO Y, DING D, BI J, et al. Experimental study on mechanical properties of precast cracked concrete under different cooling methods[J]. Construction and Building Materials, 2021, 301: 124141. [18] ZHENG Y X, ZHANG Y, ZHUO J B, et al. A review of the mechanical properties and durability of basalt fiber-reinforced concrete[J]. Construction and Building Materials, 2022, 359: 129360. [19] 王俊颜, 杨全兵. HDPE管混凝土延性和韧性的试验研究[J]. 建筑材料学报, 2009, 12(4): 394-397. WANG J Y, YANG Q B. Experimental study on ductility and toughness of HDPE-pipe concrete[J]. Journal of Building Materials, 2009, 12(4): 394-397 (in Chinese). |