BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2021, Vol. 40 ›› Issue (5): 1441-1452.
Special Issue: 水泥混凝土
• Cement and Concrete • Previous Articles Next Articles
CHEN Junsong1,2, WANG Wei1,2, QIAO Min1,2, ZHAO Shuang1,2, ZENG Luping1,2
Received:
2020-12-11
Revised:
2021-01-09
Online:
2021-05-15
Published:
2021-06-07
CLC Number:
CHEN Junsong, WANG Wei, QIAO Min, ZHAO Shuang, ZENG Luping. Research Progress on Influence of High Rock Temperature on Performance of Shotcrete[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(5): 1441-1452.
[1] 王心飞.深埋隧道稳定性分析的智能化及非线性研究[D].重庆:重庆大学,2006. WANG X F. Intelligent and non-linear analysis of the stability of deep-buried tunnel[D]. Chongqing: Chongqing University, 2006 (in Chinese). [2] 范 磊.高地温深埋特长隧道热害综合防治关键技术研究[J].现代隧道技术,2019,56(6):1-10. FAN L. Study on the key techniques for comprehensive control of heat harm of the deep-buried and super-long tunnel with high ground temperature[J]. Modern Tunnelling Technology, 2019, 56(6): 1-10 (in Chinese). [3] 李向辉,汪 健,段 宇.高地温隧洞对喷射混凝土性能影响的研究[J].河北工程大学学报(自然科学版),2014,31(4):17-20. LI X H, WANG J, DUAN Y. Research on the effects of high temperature tunnel of sprayed concrete performance[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2014, 31(4): 17-20 (in Chinese). [4] HOLAN J, NOVÁK J, MÜLLER P, et al. Experimental investigation of the compressive strength of normal-strength air-entrained concrete at high temperatures[J]. Construction and Building Materials, 2020, 248: 118662. [5] WANG W C, WANG H Y, CHANG K H, et al. Effect of high temperature on the strength and thermal conductivity of glass fiber concrete[J]. Construction and Building Materials, 2020, 245: 118387. [6] DENG Z H, HUANG H Q, YE B L, et al. Investigation on recycled aggregate concretes exposed to high temperature by biaxial compressive tests[J]. Construction and Building Materials, 2020, 244: 118048. [7] ZHANG D S, YANG Q N, MAO M J, et al. Carbonation performance of concrete with fly ash as fine aggregate after stress damage and high temperature exposure[J]. Construction and Building Materials, 2020, 242: 118125. [8] CHAN Y N, LUO X, SUN W. Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to 800 ℃[J]. Cement and Concrete Research, 2000, 30(2): 247-251. [9] KOMONEN J, PENTTALA V. Effects of high temperature on the pore structure and strength of plain and polypropylene fiber reinforced cement pastes[J]. Fire Technology, 2003, 39(1): 23-34. [10] RAHIM A, SHARMA U K, MURUGESAN K, et al. Multi-response optimization of post-fire residual compressive strength of high performance concrete[J]. Construction and Building Materials, 2013, 38: 265-273. [11] 崔圣爱,李江渭,叶跃忠,等.高地温隧道干热环境中喷射混凝土与岩石黏结强度[J].建筑材料学报,2013,16(4):663-666+682. CUI S A, LI J W, YE Y Z, et al. Bond strength of shotcrete with rock in dry and hot environment of high ground temperature tunnel[J]. Journal of Building Materials, 2013, 16(4): 663-666+682 (in Chinese). [12] 崔圣爱,郭 晨,李福海,等.基于不同测定方法的热害环境喷射混凝土黏结性能分析[J].铁道学报,2015,37(8):104-108. CUI S A, GUO C, LI F H, et al, Analysis on bond performance of shotcrete based on different testing methods in thermal damage tunnel[J]. Journal of the China Railway Society, 2015, 37(8): 104-108 (in Chinese). [13] 唐 阳,宿 辉,李向辉,等.高地温引水隧洞喷混凝土-围岩粘结强度试验研究[J].水电能源科学,2015,33(3):108-110+123. TANG Y, SU H, LI X H, et al. Cohesive strength test study of high geothermal diversion tunnel shotcrete-surrounding rock[J]. Water Resources and Power, 2015, 33(3): 108-110+123 (in Chinese). [14] 马秋娟,段 宇,宿 辉,等.不同岩壁温度对围岩-喷射混凝土粘结强度的影响分析[J].水利水电技术,2015,46(9):62-65. MA Q J, DUAN Y, SU H, et al. Analysis on impacts of different rock wall temperatures on bonding strength between surrounding rock and shotcrete[J]. Water Resources and Hydropower Engineering, 2015, 46(9): 62-65 (in Chinese). [15] 唐 阳,宿 辉,张 宏,等.高地温隧洞喷混凝土-围岩粘结强度及微观破坏机理[J].水电能源科学,2015,33(4):127-129+63. TANG Y, SU H, ZHANG H, et al. Cohesive strength and micro failure mechanism of high geothermal diversion tunnel shotcrete surrounding rock[J]. Water Resources and Power, 2015, 33(4): 127-129+63 (in Chinese). [16] TANG Y, XU G B, LIAN J J, et al. Effect of temperature and humidity on the adhesion strength and damage mechanism of shotcrete-surrounded rock[J]. Construction and Building Materials, 2016, 124: 1109-1119. [17] 范利丹,李培涛,余永强,等.养护温度对喷射混凝土性能影响的试验研究[J].硅酸盐通报,2017,36(10):3487-3492. FAN L D, LI P T, YU Y Q, et al. Experimental study on the effect of curing temperature on shotcrete properties[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(10): 3487-3492 (in Chinese). [18] BROWN P W, BOTHE J V. The stability of ettringite[J]. Advances in Cement Research, 1993, 5(18): 47-63. [19] 何廷树,汲江涛,王 艳,等.高岩温隧道下矿物掺合料对混凝土力学性能的影响[J].材料导报,2013,27(6):119-122. HE T S, JI J T, WANG Y, et al. Influence of mineral admixture on mechanical properties in high temperature surrounding rock tunnel[J]. Materials Review, 2013, 27(6): 119-122 (in Chinese). [20] 汲江涛.高岩温隧道衬砌混凝土力学性能的研究[D].西安:西安建筑科技大学,2013:15-24. JI J T. Influence of high rock wall temperature on mechanical properties of lining concrete in tunnel[D]. Xi’an: Xi’an University of Architecture and Technology, 2013: 15-24 (in Chinese). [21] NIU D T, ZHANG S H, WANG Y, et al. Effect of temperature on the strength, hydration products and microstructure of shotcrete blended with supplementary cementitious materials[J]. Construction and Building Materials, 2020, 264: 120234. [22] WANG M N, HU Y P, JIANG C, et al. Mechanical characteristics of cement-based grouting material in high-geothermal tunnel[J]. Materials, 2020, 13(7): 1572. [23] CUI S G, ZHU B, LI F H, et al. Experimental study on bond performance between shotcrete and rock in a hot and humid tunnel environment[J]. KSCE Journal of Civil Engineering, 2016, 20(4): 1385-1391. [24] CUI S G, LIU P, SU J, et al. Experimental study on mechanical and microstructural properties of cement-based paste for shotcrete use in high-temperature geothermal environment[J]. Construction and Building Materials, 2018, 174: 603-612. [25] LIU P, CUI S G, LI Z H, et al. Influence of surrounding rock temperature on mechanical property and pore structure of concrete for shotcrete use in a hot-dry environment of high-temperature geothermal tunnel[J]. Construction and Building Materials, 2019, 207: 329-337. [26] CUI S G, LIU P, CUI E Q, et al. Experimental study on mechanical property and pore structure of concrete for shotcrete use in a hot-dry environment of high geothermal tunnels[J]. Construction and Building Materials, 2018, 173: 124-135. [27] 欧灶华.喷射混凝土在热环境下性能及工艺研究[D].成都:西南交通大学,2011:40-50. OU Z H. The study of shotcrete performance and construction technology in hot environment[D]. Chengdu: Southwest Jiaotong University, 2011: 40-50 (in Chinese). [28] 张 岩,李 宁,张浩博,等.温差影响下水工隧洞喷层结构的早期劈拉强度试验研究[J].水力发电学报,2014,33(2):221-229. ZHANG Y, LI N, ZHANG H B, et al. Experimental study on early splitting strength of hydraulic tunnel shotcrete layer under temperature differences[J]. Journal of Hydroelectric Engineering, 2014, 33(2): 221-229 (in Chinese). [29] 唐兴华,王明年,童建军,等.高温变温条件下喷射混凝土-花岗岩胶结面剪切强度[J].铁道学报,2017,39(12):131-136. TANG X H, WANG M N, TONG J J, et al. Shear strength of cementation plane between shotcrete and granite under high and variable temperature[J]. Journal of the China Railway Society, 2017, 39(12): 131-136 (in Chinese). [30] 王明年,胡云鹏,童建军,等.高温变温环境下喷射混凝土-岩石界面剪切特性及温度损伤模型研究[J].岩石力学与工程学报,2019,38(1):63-75. WANG M N, HU Y P, TONG J J, et al. Experimental study on shear mechanical properties and thermal damage model of shotcrete-rock interfaces under variable high temperatures[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(1): 63-75 (in Chinese). [31] HU Y P, WANG M N, WANG Z L, et al. Mechanical behavior and constitutive model of shotcrete-rock interface subjected to heat damage and variable temperature curing conditions[J]. Construction and Building Materials, 2020, 263: 120171. [32] 董从宇.高岩温隧道喷射混凝土与花岗岩围岩界面剪切特性及本构关系研究[D].成都:西南交通大学,2017:22-60. DONG C Y. Study on interfical shear behavior and constitutive relations of shotcrete-granite joints in high rock temperature tunnel[D]. Chengdu: Southwest Jiaotong University, 2017: 22-60 (in Chinese). [33] 何廷树,张 弟,王 艳,等.高岩温对衬砌混凝土耐久性能的影响[J].硅酸盐通报,2013,32(2):325-329. HE T S, ZHANG D, WANG Y, et al. Effect of high rock wall temperature on performance of lining concrete[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(2): 325-329 (in Chinese). [34] 李培涛.养护温度对喷射混凝土性能影响试验研究[D].焦作:河南理工大学,2018:68-71. LI P T. Experimental study on influence of curing temperature on performance of shotcrete[D]. Jiaozuo: Henan Polytechnic University, 2018: 68-71 (in Chinese). [35] 杨红艳.热害隧道喷射混凝土性能研究及结构行为分析[D].成都:西南交通大学,2013:24-33. YANG H Y. Study on performance of shotcrete under heat harm tunnel and structure behavior analysis[D]. Chengdu: Southwest Jiaotong University, 2013: 24-33 (in Chinese). [36] 宿 辉,黄 顺,屈春来.高温对喷射混凝土孔隙结构分布特征的影响分析[J].科学技术与工程,2016,16(10):225-229. SU H, HUANG S, QU C L. Analysis the distribution characteristics of pore structure in shotcrete affected by high temperature[J]. Science Technology and Engineering, 2016, 16(10): 225-229 (in Chinese). [37] 庞建勇,姚文杰,姚韦靖.高温巷道新型隔热混凝土材料性能试验研究[J].混凝土与水泥制品,2016(1):5-9. PANG J Y, YAO W J, YAO W J. Experimental research on performance of new type of thermal insulation concrete material in high-temperature tunnel[J]. China Concrete and Cement Products, 2016(1): 5-9 (in Chinese). [38] 何壮志.高温巷道隔热喷射混凝土试验及应用研究[D].淮南:安徽理工大学,2018:27-60. HE Z Z. Test and application of thermal insulation shotcrete in high temperature roadway[D]. Huainan: Anhui University of Science & Technology, 2018: 27-60 (in Chinese). [39] 姚韦靖,庞建勇.矿井高温巷道喷射隔热混凝土正交试验研究[J].非金属矿,2017,40(5):48-52. YAO W J, PANG J Y. The orthogonal experimental study on the thermal insulation injection concrete of high temperature mine roadway[J]. Non-Metallic Mines, 2017, 40(5): 48-52 (in Chinese). [40] 姚韦靖.深部高地温岩层巷道隔热混凝土喷层支护技术研究及应用[D].淮南:安徽理工大学,2019:102-126. YAO W J. Research and application of thermal insulation concrete spray layer support technology for deep and high temperature rock roadways[D]. Huainan: Anhui University of Science & Technology, 2019: 102-126 (in Chinese). [41] 张俊儒,欧小强.适用于高岩温隧道中的高性能隔热轻骨料喷射混凝土[J].混凝土,2016(9):140-144. ZHANG J R, OU X Q. Research idea for high-performance thermal insulation lightweight aggregate shotcrete in high geo-temperature tunnel[J]. Concrete, 2016(9): 140-144 (in Chinese). |
[1] | ZHANG Yi, ZHU Yanmei, REN Qiang, JIANG Zhengwu. Progress on 3D Printing Construction Technology and Its Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1796-1807. |
[2] | WANG Yuling, WANG Chunfu, ZHANG Feiyan. Review on Performance Requirements and Related Admixtures of 3D Printed Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1844-1854. |
[3] | JIN Yuan, XU Jiabin, SUN Dengtian, CHEN Mingxu, HUANG Yongbo, LU Lingchao, CHENG Xin. Effect of Nano-Silica on Structural Deformation, Rheological and Mechanical Properties of 3D Printed White Portland Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1855-1862. |
[4] | XU Jiabin, JIN Yuan, ZHAO Zhihui, CHEN Mingxu, LU Lingchao, CHENG Xin. Effect of Iron Oxide Red Pigment on Rheological Property and Printability of 3D Printed White Portland Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1863-1869. |
[5] | ZHANG Chao, DENG Zhicong, WANG Zhibin, HOU Zeyu, JIA Zijian, WANG Xianggang, JIA Lutao, CHEN Chun, SUN Zhengming, ZHANG Yamei, PAN Jinlong. Effects of Fibers on Printing Performance and Mechanical Properties of 3D Printing Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1870-1878. |
[6] | CAO Qianfei, CUI Dong, SHI Xiaohan, WAN Yi, ZUO Xiaobao, LAI Jianzhong. Effect of Humidity Evolution on Microstructure and Mechanical Properties of Alternate 3D Printing Specimens [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1879-1888. |
[7] | CUI Congcong, LI Shan, LI Wei, BAO Jianxun, ZHANG Ge, WANG Gong. Sintering Characteristics of SiC Ceramics Prepared by Stereolithography 3D Printing [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1937-1942. |
[8] | HE Yining, DAI Gaoshang, WU Jiamin, ZHANG Jie, PAN Mingzhu, CHEN Jingyan, CHEN Ying, WANG Yongjun, ZHANG Hongxing. Effect of Epoxy Resin Content on Properties of Porous Coal Series Kaolin Ceramics Prepared by Selective Laser Sintering [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1950-1956. |
[9] | MING Xinzhao, LIU Zhichao, WANG Fazhou, HU Shuguang, HU Chuanlin. Effect of Al2O3 Doping on Carbonation Performance of γ-C2S [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 2003-2010. |
[10] | LIU Hulin, WANG Zhao, WU Yuanting, REN Siqian, WANG Wei, HAN Guiying. Review on Characteristics of Fluidized Bed Combustion Ashes and Key Issues in Their Application as Cement Admixtures [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 2052-2061. |
[11] | YAN Ziwei, LIU Li, SUN Jinfeng, LU Bao, ZU Qinghe, ZANG Jun, LI Debiao, HOU Guihua. Synergistic Effect of Tricalcium Aluminate and Calcium Carbonate on Early Mechanical Strength and Setting Time of Portland Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(5): 1470-1476. |
[12] | HE Wei, XU Jihang. Effect of Few-Layer Graphene on Properties of Ordinary Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(5): 1477-1488. |
[13] | TIAN Jiandong, LU Longyuan. Reuse of Stone Waste Powder Based on Uniform Design Test Method [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(5): 1536-1544. |
[14] | LIU Pan, CHANG Chenggong, LIU Xiuquan, DONG Jinmei, ZHENG Weixin, XIAO Xueying, WEN Jing. Influence of Fly ash Content on Physical and Mechanical Properties of Magnesium Oxychloride Cement Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(5): 1564-1572. |
[15] | GU Yue, WANG Dongmin, FANG Kuizhen, YAO Guang, WANG Qibao, ZHANG Ming, SUN Rui, LYU Nan. Dissolution Characteristics of Coal Gasification Slag and Its Effect on Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(5): 1579-1585. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||