BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2026, Vol. 45 ›› Issue (1): 237-245.DOI: 10.16552/j.cnki.issn1001-1625.2025.0739
Previous Articles Next Articles
WANG Panpan1(
), SUN Jinjin1, ZHANG Peiran1, YANG Qi1, WAN Xing2(
), FENG Xu2, WANG Zhihua2, DING Jianwen3
Received:2025-07-28
Revised:2025-09-05
Online:2026-01-20
Published:2026-02-10
CLC Number:
WANG Panpan, SUN Jinjin, ZHANG Peiran, YANG Qi, WAN Xing, FENG Xu, WANG Zhihua, DING Jianwen. Preparation and Performance Optimization of Shield Mud-Based Non-Sintered Ceramsite[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 237-245.
| Density/(g·cm-3) | Water content/% | Specific gravity | Liquid limit/% | Plastic limit/% | Organic matters content/% |
|---|---|---|---|---|---|
| 2.19 | 34.5 | 2.82 | 31.9 | 18.9 | 4.96 |
Table 1 Basic physical properties of pretreating shield mud
| Density/(g·cm-3) | Water content/% | Specific gravity | Liquid limit/% | Plastic limit/% | Organic matters content/% |
|---|---|---|---|---|---|
| 2.19 | 34.5 | 2.82 | 31.9 | 18.9 | 4.96 |
| Mineral composition | Quartz | Albite | Muscovite | Montmorillonite | Calcite | Serpentine |
|---|---|---|---|---|---|---|
| Mass fraction/% | 46.2 | 24.3 | 20.0 | 4.3 | 4.3 | 0.9 |
Table 2 Main mineral composition of pretreating shield mud
| Mineral composition | Quartz | Albite | Muscovite | Montmorillonite | Calcite | Serpentine |
|---|---|---|---|---|---|---|
| Mass fraction/% | 46.2 | 24.3 | 20.0 | 4.3 | 4.3 | 0.9 |
| Chemical composition | Al2O3 | SiO2 | Fe2O3 | K2O | MgO | Na2O | TiO2 |
|---|---|---|---|---|---|---|---|
| Mass fraction/% | 14.77 | 60.56 | 5.24 | 2.30 | 2.47 | 1.40 | 0.87 |
Table 3 Main chemical composition of pretreating shield mud
| Chemical composition | Al2O3 | SiO2 | Fe2O3 | K2O | MgO | Na2O | TiO2 |
|---|---|---|---|---|---|---|---|
| Mass fraction/% | 14.77 | 60.56 | 5.24 | 2.30 | 2.47 | 1.40 | 0.87 |
| No. | Modifier | Modifier proportion |
|---|---|---|
| 1 | Sodium sulfate +triethanolamine (chemical modifier) | 0.5% sodium sulfate+0.025% triethanolamine (S0.5T0.025) |
| 2 | 1.0% sodium sulfate+0.050% triethanolamine (S1.0T0.050) | |
| 3 | 1.5% sodium sulfate +0.075% triethanolamine (S1.5T0.075) | |
| 4 | Calcium sulfoaluminate (chemical modifier) | 1% calcium sulfoaluminate (CS1) |
| 5 | 2% calcium sulfoaluminate (CS2) | |
| 6 | Polypropylene fiber (mechanical modifier) | 1% polypropylene fiber (PF1) |
| 7 | 2% polypropylene fiber (PF2) |
Table 4 Mix proportion of modifier
| No. | Modifier | Modifier proportion |
|---|---|---|
| 1 | Sodium sulfate +triethanolamine (chemical modifier) | 0.5% sodium sulfate+0.025% triethanolamine (S0.5T0.025) |
| 2 | 1.0% sodium sulfate+0.050% triethanolamine (S1.0T0.050) | |
| 3 | 1.5% sodium sulfate +0.075% triethanolamine (S1.5T0.075) | |
| 4 | Calcium sulfoaluminate (chemical modifier) | 1% calcium sulfoaluminate (CS1) |
| 5 | 2% calcium sulfoaluminate (CS2) | |
| 6 | Polypropylene fiber (mechanical modifier) | 1% polypropylene fiber (PF1) |
| 7 | 2% polypropylene fiber (PF2) |
| [1] | 郭卫社, 王百泉, 李沿宗, 等. 盾构渣土无害化处理、资源化利用现状与展望[J]. 隧道建设(中英文), 2020, 40(8): 1101-1112. |
| GUO W S, WANG B Q, LI Y Z, et al. Status quo and prospect of harmless disposal and reclamation of shield muck in China[J]. Tunnel Construction, 2020, 40(8): 1101-1112 (in Chinese). | |
| [2] | 朱瑜星, 卞 怡, 闵凡路, 等. 地铁盾构渣土改良为流动化土进行应用试验研究[J]. 土木工程学报, 2020, 53(增刊1): 245-251. |
| ZHU Y X, BIAN Y, MIN F L, et al. Experimental study on the application of improving subway shield muck into mobile soil[J]. China Civil Engineering Journal, 2020, 53(supplement 1): 245-251 (in Chinese). | |
| [3] | 朱 伟, 钱勇进, 王 璐, 等. 盾构隧道渣土与泥浆的分类与处理利用技术及主要问题[J]. 隧道建设(中英文), 2021, 41(增刊2): 1-13. |
| ZHU W, QIAN Y J, WANG L, et al. Classification, treatment and utilization technology and main problems of muck and mud in shield tunnel[J]. Tunnel Construction, 2021, 41(supplement 2): 1-13 (in Chinese). | |
| [4] |
OCAK I. Environmental problems caused by Istanbul subway excavation and suggestions for remediation[J]. Environmental Geology, 2009, 58(7): 1557-1566.
DOI URL |
| [5] | 简永洲, 易斌斌, 李福东, 等. 渣土浆液在盾构壁后注浆中的再利用及配比优化研究[J]. 隧道建设(中英文), 2025, 45(4): 740-748. |
| JIAN Y Z, YI B B, LI F D, et al. Recycling and mixing proportion optimization of muck generated by shield tunneling in grouting behind lining[J]. Tunnel Construction, 2025, 45(4): 740-748 (in Chinese). | |
| [6] |
DALAL P H, PATIL M, IYER KK R, et al. Sustainable controlled low strength material from waste materials for infrastructure applications: state-of-the-art[J]. Journal of Environmental Management, 2023, 342: 118284.
DOI URL |
| [7] | 郝 彤, 王 帅, 冷发光. 利用地铁盾构渣土制备高流态充填材料[J]. 硅酸盐通报, 2020, 39(5): 1525-1532. |
| HAO T, WANG S, LENG F G. Preparation of high fluid filling materials by using subway shield muck[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(5): 1525-1532 (in Chinese). | |
| [8] | 郭沁颖, 李白云, 丁建文, 等. 工业废渣改良泥水盾构渣土的路用性能试验研究[J]. 土木与环境工程学报(中英文), 2025, 47(2): 66-75. |
| GUO Q Y, LI B Y, DING J W, et al. Road performance investigation of slurry shield tunnel residue improved by industrial waste residues[J]. Journal of Civil and Environmental Engineering, 2025, 47(2): 66-75 (in Chinese). | |
| [9] |
JO B W, PARK S K, PARK J B. Properties of concrete made with alkali-activated fly ash lightweight aggregate (AFLA)[J]. Cement and Concrete Composites, 2007, 29(2): 128-135.
DOI URL |
| [10] | 赵增丰, 蒲紫盈, 林 璨, 等. 免烧陶粒及陶粒混凝土性能研究进展[J]. 材料导报, 2024, 38(20): 88-100. |
| ZHAO Z F, PU Z Y, LIN C, et al. Research progress of cold-bonded aggregate and application in concrete production[J]. Materials Reports, 2024, 38(20): 88-100 (in Chinese). | |
| [11] |
TAJRA F, ELRAHMAN M A, STEPHAN D. The production and properties of cold-bonded aggregate and its applications in concrete: a review[J]. Construction and Building Materials, 2019, 225: 29-43.
DOI URL |
| [12] | 朱万旭, 酆 磊, 周红梅, 等. 新型免烧粉煤灰陶粒的研制及应用浅析[J]. 混凝土, 2017(5): 59-62. |
| ZHU W X, FENG L, ZHOU H M, et al. Analysis on the development and application of a new type of ash haydite[J]. Concrete, 2017(5): 59-62 (in Chinese). | |
| [13] |
PAN H M, SI X Y, WANG S, et al. Preparation of low-carbon and environmentally friendly non-sintered ceramsite (NSC) employing steel slag, GGBS and fly ash: experiment and performance regulation[J]. Construction and Building Materials, 2024, 411: 134438.
DOI URL |
| [14] | 高 鹏, 徐悦清, 曹 云, 等. 淤泥基免烧陶粒的制备及性能影响因素[J]. 硅酸盐通报, 2021, 40(3): 889-899. |
| GAO P, XU Y Q, CAO Y, et al. Preparation and performance influencing factors of silt-based non-sintered ceramsite[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(3): 889-899 (in Chinese). | |
| [15] | 李 沧, 程霄智, 矫 辰, 等. 赤泥-钢渣基免烧陶粒的制备及除磷特性研究[J]. 水处理技术, 2024, 50(10): 38-43. |
|
LI C, CHENG X Z, JIAO C, et al. Study on preparation and phosphorus removal characteristics of red mud and steel slag based non-sintered ceramsite[J]. Technology of Water Treatment, 2024, 50(10): 38-43 (in Chinese).
DOI |
|
| [16] |
WANG J H, CHIAN S C, MA T, et al. Stabilization of dredged clays with ternary alkali-activated materials: towards sustainable solid wastes recycling[J]. Journal of Cleaner Production, 2023, 426: 139086.
DOI URL |
| [17] | 陈 佳, 陈铁军, 张一敏, 等. 利用石煤提钒尾矿制备免烧陶粒[J]. 金属矿山, 2013(1): 164-167. |
| CHEN J, CHEN T J, ZHANG Y M, et al. Preparation of burn-free ceramsite with stone-coal vanadium tailings[J]. Metal Mine, 2013(1): 164-167 (in Chinese). | |
| [18] | 陈柏琪, 李振宝, 石南南, 等. 掺合料对陶粒泡沫混凝土流动性及强度影响[J]. 混凝土, 2024(10): 69-73. |
| CHEN B Q, LI Z B, SHI N N, et al. Effects of admixtures on fluidity and strength of ceramsite foam concrete[J]. Concrete, 2024(10): 69-73 (in Chinese). | |
| [19] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 轻集料及其试验方法: GB/T 17431—2010[S]. 北京: 中国标准出版社, 2010. |
| General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, AdministrationStandardization. Lightweight aggregates and its test methods: GB/T 17431—2010[S]. Beijing: Standards Press of China, 2010 (in Chinese). | |
| [20] | 钱觉时, 余金城, 孙化强, 等. 钙矾石的形成与作用[J]. 硅酸盐学报, 2017, 45(11): 1569-1581. |
| QIAN J S, YU J C, SUN H Q, et al. Formation and function of ettringite in cement hydrates[J]. Journal of the Chinese Ceramic Society, 2017, 45(11): 1569-1581 (in Chinese). | |
| [21] | 宁建国, 黄 新, 许 晟. 土样pH值对固化土抗压强度增长的影响研究[J]. 岩土工程学报, 2007, 29(1): 98-102. |
| NING J G, HUANG X, XU S. Effect of pH value of soil on strength increasing of the stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 98-102 (in Chinese). |
| [1] | CHEN Youmei, LI Yicheng, HE Ting, LIU Yingshou, LI Yang, XIAO Hanning, YUAN Mouyun, ZHANG Weiqun. Effect of Nano-TiO2 on Sintering Characteristics of Al2O3 Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 256-263. |
| [2] | CHEN Tao, LI Siyu, ZENG Qibin, LIU Yifan, LIU Minghua. Research and Application of Lignin Depolymerisation Products Modified Melamine-Based Ceramic Additives [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2608-2616. |
| [3] | LIU Sen, CHEN Mao, CHEN Yongqiang, WANG Hailong, ZHANG Rui, FAN Bingbing. Effect Mechanism of Sintering Additives on Structure and Properties of Reaction-Sintering SiC Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2259-2268. |
| [4] | XIAO Ciyu, ZHANG Haiyan, ZHAN Jianchao, BU Jibin. Preparation and Application of Non-Sintered Lightweight and High-Strength Ceramsite from Residual Clay of Waste Soil [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1428-1437. |
| [5] | GAO Yingli, XIONG Haoyu, FENG Xinling, ZHU Juncai, ZHAO Fuyi. Composition Design and Fiber Influence Effects of Hybrid Fiber One-Part Geopolymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1357-1366. |
| [6] | ZHU Kaifeng, HE Junchao, GONG Xiaolong, LIU Kai, SUN Huajun, SHI Yusheng. Stereolithography Additive Manufacturing Process and Electrical Properties of Lead Zirconate Titanate Piezoelectric Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 679-689. |
| [7] | YAN Jie, XING Guobin, FENG Longhui, LIANG Chongyang, XIE Jun, WENG Weisu, BAI Qijing. Effect of Ramie Fiber on Mechanical Strength of Recycled Aggregate Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 455-462. |
| [8] | HUANG Qiang, ZHANG Yongcheng, CAO Feng, REN Huichao. Mechanical Properties of PET Fiber Composite Mortar Based on Response Surface Optimization [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(12): 4332-4345. |
| [9] | FAN Xiaochun, YANG Dongsheng, ZHANG Yu, GAO Xu, YU Liju. Influences of Additives on Alkali-Activated Cementitious Materials Drying Shrinkage Performance [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(8): 2788-2796. |
| [10] | LI Hongxuan, QI Dongyou, ZOU Delin, WANG Jianfeng, WANG Zhiyong, HAO Lulu, WANG Yali, ZHANG Yu, LIU Hongyin. Comparative Study on Hydration Process of Ferroaluminate, Sulfoaluminate and Portland Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2335-2345. |
| [11] | LI Wei, ZHANG Ge, CUI Congcong, BAO Jianxun, GUO Conghui. Research Progress of Additive Manufacturing SiC Ceramic Mirror [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2661-2671. |
| [12] | WANG Xiaoyan, YE Wuping, CAO Liqiang. Influence and Mechanism Analysis of Re-Dispersible Latex Powder on Performance of Steel Structure Interface Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 1999-2004. |
| [13] | BI Lunan, LI Ling, SONG Tao, WANG Yingying, LYU Jiaqi, LU Xiang, HAN Zhuoqun, WANG Yang. Preparation of High-Performance BaTiO3 Piezoelectric Ceramics by Stereolithography 3D Printing [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1764-1771. |
| [14] | LIU Kai, LU Chao, HE Junchao, LI Tianyang, SHEN Chunhua, YAN Chunze, SHI Yusheng, SUN Huajun. High-Temperature Sintering and Polarization Process of Additive Manufacturing Barium Titanate Piezoelectric Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1772-1783. |
| [15] | LAI Yuefei, WANG Huijun, ZENG Qiang, XIONG Chengrong, SU Xiaoli, LUO Ting. Progress on Cordierite Based Ceramic Materials Prepared from Industrial Wastes [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(12): 4521-4531. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||