[1] CAO D, MA Y F, SHI Z N, et al. Corrosion behavior of Fe-Ni alloys in molten KF-AlF3-Al2O3 salts at 700 ℃[J]. Corrosion Science, 2019, 156: 32-43. [2] LIU Y, CHAI D P, WANG W, et al. Influences of heat treatment on the oxidation and corrosion behavior of Cu-Ni-Fe inert anodes for aluminium electrolysis[J]. Journal of Alloys and Compounds, 2020, 832: 154848. [3] WEI W, GENG S J, XIE D B, et al. High temperature oxidation and corrosion behaviours of Ni-Fe-Cr alloys as inert anode for aluminum electrolysis[J]. Corrosion Science, 2019, 157: 382-391. [4] MA L, ZHOU K C, LI Z Y. Hot corrosion of a novel (Ni,Co)O/(Ni,Co)Fe2O4 composite coating thermally converted from an electrodeposited Ni-Co-Fe2O3 composite coating[J]. Corrosion Science, 2011, 53(7): 2357-2367. [5] GEORGE E P, RAABE D, RITCHIE R O. High-entropy alloys[J]. Nature Reviews Materials, 2019, 4: 515-534. [6] ZEMANATE A M, JORGE A M Jr, DE LIMA ANDREANI G F, et al. Corrosion behavior of AlCoCrFeNix high entropy alloys[J]. Electrochimica Acta, 2023, 441: 141844. [7] YE Y F, WANG Q, LU J, et al. High-entropy alloy: challenges and prospects[J]. Materials Today, 2016, 19(6): 349-362. [8] XIANG T, CAI Z Y, DU P, et al. Dual phase equal-atomic NbTaTiZr high-entropy alloy with ultra-fine grain and excellent mechanical properties fabricated by spark plasma sintering[J]. Journal of Materials Science & Technology, 2021, 90: 150-158. [9] HUANG M J, JIANG J F, WANG Y, et al. Microstructure evolution, phase decomposition and transition of Al0.8Co0.5Cr1.5 CuFeNi HEA during high temperature sintering and mechanical properties corresponding to different microstructures[J]. Materials & Design, 2022, 223: 111167. [10] CHENG H, LIU X Q, TANG Q H, et al. Microstructure and mechanical properties of FeCoCrNiMnAlx high-entropy alloys prepared by mechanical alloying and hot-pressed sintering[J]. Journal of Alloys and Compounds, 2019, 775: 742-751. [11] GARIP Y, ERGIN N, OZDEMIR O. Resistance sintering of CoCrFeNiAlx (x=0.7, 0.85, 1) high entropy alloys: microstructural characterization, oxidation and corrosion properties[J]. Journal of Alloys and Compounds, 2021, 877: 160180. [12] RAZA A, ABDULAHAD S, KANG B, et al. Corrosion resistance of weight reduced AlxCrFeMoV high entropy alloys[J]. Applied Surface Science, 2019, 485: 368-374. [13] FU Y, LI J, LUO H, et al. Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys[J]. Journal of Materials Science & Technology, 2021, 80: 217-233. [14] TOROGHINEJAD M R, PIRMORADIAN H, SHABANI A. Synthesis of FeCrCoNiCu high entropy alloy through mechanical alloying and spark plasma sintering processes[J]. Materials Chemistry and Physics, 2022, 289: 126433. [15] Suprianto, CHEN C L. Study of Cu effect and in situ yttria dispersoids on microstructure evolution of mechanically alloyed CoFeNiCrCu high entropy alloys[J]. Metals and Materials International, 2023, 29(2): 420-428. [16] HE Y X, ZHANG Y Q, BU F, et al. Origin identification and regulation of BCC precipitation in a CoCrFeNi high entropy alloy[J]. Materials Research Letters, 2024, 12(4): 306-314. [17] FENG L, YANG Y, ZHAO Y C, et al. Corrosion behaviors and mechanism of AlxCrFeMnCu high-entropy alloys in a 3.5wt% NaCl solution[J]. Corrosion Science, 2024, 233: 112087. [18] CUI P C, BAO Z J, LIU Y, et al. Corrosion behavior and mechanism of dual phase Fe1.125Ni1.06CrAl high entropy alloy[J]. Corrosion Science, 2022, 201: 110276. [19] JAHANI N, REIHANIAN M, GHEISARI K. Alloying and corrosion characteristics of FeNiMnCu-based high entropy alloys[J]. Materials Chemistry and Physics, 2024, 315: 128990. [20] HUANG M J, JIANG J F, WANG Y, et al. High temperature and short-term oxidation behavior of CoCrCu1.2FeNi high entropy alloy in solid and semi-solid state[J]. Corrosion Science, 2021, 193: 109897. [21] WANG R, CHEN W M, ZHONG J, et al. Experimental and numerical studies on the sluggish diffusion in face centered cubic Co-Cr-Cu-Fe-Ni high-entropy alloys[J]. Journal of Materials Science & Technology, 2018, 34(10): 1791-1798. |