[1] 中华人民共和国国民经济和社会发展第十四个五年规划纲要[EB/OL]. (2021-03-13)[2024-09-02]. https://www.gov.cn/xinwen/2021-03/13/content_5592681.html. The 14th five-year plan for the economic and social development of the people’s republic of China[EB/OL]. (2021-03-13)[2024-09-02]. https://www.gov.cn/xinwen/2021-03/13/content_5592681.html (in Chinese). [2] 山西省煤炭清洁高效利用促进条例[EB/OL]. (2022-12-09)[2024-09-02]. https://www.shanxi.gov.cn/ywdt/sxyw/202212/t20221214_7605606.shtml. Shanxi province regulation on promoting clean and high-efficient utilization of coal[EB/OL]. (2022-12-09)[2024-09-02]. https://www.shanxi.gov.cn/ywdt/sxyw/202212/t20221214_7605606.shtml (in Chinese). [3] 田玉明, 朱保顺, 力国民, 等. 煤矸石掺量对陶粒支撑剂性能的影响[J]. 硅酸盐学报, 2019, 47(3): 365-369. TIAN Y M, ZHU B S, LI G M, et al. Influence of coal gangue amount on properties of ceramic proppants[J]. Journal of the Chinese Ceramic Society, 2019, 47(3): 365-369 (in Chinese). [4] HAO J Y, MA H Q, FENG X, et al. Low-temperature sintering of ceramic proppants by adding solid wastes[J]. International Journal of Applied Ceramic Technology, 2018, 15(2): 563-568. [5] 王云珠. 山西能源体制机制改革重点任务研究[J]. 煤炭经济研究, 2018, 38(4): 37-43. WANG Y Z. Research on key tasks of Shanxi energy system mechanism reform[J]. Coal Economic Research, 2018, 38(4): 37-43 (in Chinese). [6] 赵紫石, 崔李鹏, 赵 旭, 等. 利用固废煤矸石制备陶粒支撑剂的研究[J]. 山西煤炭, 2019, 39(1): 1-4. ZHAO Z S, CUI L P, ZHAO X, et al. Preparation of ceramic proppant using solid waste coal gangue[J]. Shanxi Coal, 2019, 39(1): 1-4 (in Chinese). [7] 陆佩文. 无机材料科学基础[M]. 武汉: 武汉理工大学出版社, 2005. LU P W. Fundamentals of inorganic material science[M]. Wuhan: Wuhan University of Technology Press, 2005 (in Chinese). [8] 孔祥辰, 白频波, 宋 伟, 等. 煅烧煤矸石添加量对陶粒支撑剂力学性能的影响[J]. 硅酸盐通报, 2022, 41(6): 2039-2046. KONG X C, BAI P B, SONG W, et al. Effect of calcined coal gangue addition on mechanical properties of ceramic proppant[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 2039-2046 (in Chinese). [9] 郑林会. 煤矸石基陶粒支撑剂的制备与性能研究[D]. 太原: 太原理工大学, 2019. ZHENG L H. Preparation and properties of gangue-based ceramsite proppant[D]. Taiyuan: Taiyuan University of Technology, 2019 (in Chinese). [10] 黄 彪. 低密高强陶粒压裂支撑剂工艺技术研究[D]. 太原: 太原科技大学, 2019. HUANG B. Study on fracturing proppant technology of low density and high strength ceramsite[D]. Taiyuan: Taiyuan University of Science and Technology, 2019 (in Chinese). [11] 陈 杰, 石 莹, 黄庆享, 等. 矸石电厂粉煤灰的化学激发及活化机理研究[J]. 非金属矿, 2013, 36(6): 25-27. CHEN J, SHI Y, HUANG Q X, et al. Study on the chemical activation and mechanism fly ash from coal gangue-combustion power plant[J]. Non-Metallic Mines, 2013, 36(6): 25-27 (in Chinese). [12] 王亦农. 对日用瓷配料和陈腐方法的思考[J]. 河北陶瓷, 1998, 26(2): 28-29. WANG Y N. Thoughts on ingredients and stale methods of daily porcelain[J]. Hebei Ceramics, 1998, 26(2): 28-29 (in Chinese). [13] 刘宗振. 陶瓷杯把粘结泥浆的性能研究[J]. 佛山陶瓷, 2011, 11(21): 10-12. LIU Z Z. Study on the properties of bonding mud for ceramic cup handle[J]. Foshan Ceramics, 2011, 11(21): 10-12 (in Chinese). [14] 王炳铭. 墙地砖生产陈腐工艺探讨[J]. 陶瓷, 1989(6): 24-26. WANG B M. Discussion on the obsolete technology of wall and floor tile production[J]. Ceramics, 1989(6): 24-26 (in Chinese). [15] 雷宏娇. 煤层气井用超低密度陶粒支撑剂制备工艺的研究[D]. 太原: 太原科技大学, 2021. LEI H J. Study on preparation technology of ultra-low density ceramic proppants for coalbed methane wells[D]. Taiyuan: Taiyuan University of Science and Technology, 2021 (in Chinese). [16] 国家能源局. 水力压裂和砾石充填作业用支撑剂性能测试方法: SY/T 5108—2014[S]. 北京: 石油工业出版社, 2015. National Energy Administration. Proppant performance test methods for hydraulic fracturing and gravel packing operations: SY/T 5108—2014[S]. Beijing: Petroleum Industry Press, 2015 (in Chinese). [17] 邢 莉, 孙晓思, 白频波, 等. 气藏型低密度陶粒支撑剂的制备与性能研究[J]. 硅酸盐通报, 2024, 43(2): 673-681. XING L, SUN X S, BAI P B, et al. Preparation and performance of gas reservoir ceramic proppant with low density[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(2): 673-681 (in Chinese). [18] KONG X C, TIAN Y M, CHAI Y S, et al. Effects of pyrolusite additive on the microstructure and mechanical strength of corundum-mullite ceramics[J]. Ceramics International, 2015, 41(3): 4294-4300. [19] XUAN S T, TIAN Y M, KONG X C, et al. Enhancement of thermal shock resistance of Al2O3-MgAl2O4 composites by controlling the content and distribution of spinel phase[J]. Ceramics International, 2023, 49(24): 39908-39916. [20] XUAN S T, KONG X C, HAO J Y, et al. The reinforcing mechanism of ionic interdiffusion on MgO-MgAl2O4 composites between structural densification and mechanical property[J]. Ceramics International, 2024, 50(5): 7346-7354. [21] 刘 强. 氧化铝-莫来石前驱体纤维的溶胶设计及预烧结机理研究[D]. 长沙: 中南大学, 2023. LIU Q. Study on the sol design and pre-sintering mechanism of alumina-mullite precursor fibers[D]. Changsha: Central South University, 2023 (in Chinese). |