BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2025, Vol. 44 ›› Issue (2): 501-514.DOI: 10.16552/j.cnki.issn1001-1625.20241118.003
• Solid Waste and Eco-Materials • Previous Articles Next Articles
LI Chao1, LI Zhikang2, LI Xinyu1, HUANG Yongliang3, WANG Wu1, LUO Zhengdong2, LI Wenjia1, XU Fu2
Received:
2024-07-31
Revised:
2024-10-15
Online:
2025-02-15
Published:
2025-02-28
CLC Number:
LI Chao, LI Zhikang, LI Xinyu, HUANG Yongliang, WANG Wu, LUO Zhengdong, LI Wenjia, XU Fu. Review on Factors Affecting Setting and Hardening Characteristics of Geopolymers[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 501-514.
[1] DAVIDOVITS J. Chemistry of geopolymeric systems, terminology[C]//Proceedings of 2nd International Conference on Geopolymer 99, Saint Quentin, 1999: 9-37. [2] PROVIS J L, BERNAL S A. Geopolymers and related alkali-activated materials[J]. Annual Review of Materials Research, 2014, 44: 299-327. [3] DAVIDOVITS J. Geopolymers[J]. Journal of Thermal Analysis, 1991, 37(8): 1633-1656. [4] YIN B, KANG T H, KANG J T, et al. Analysis of active ion-leaching behavior and the reaction mechanism during alkali activation of low-calcium fly ash[J]. International Journal of Concrete Structures and Materials, 2018, 12(1): 50. [5] PROVIS J L, VAN DEVENTER J S J. Geopolymerisation kinetics: reaction kinetic modelling[J]. Chemical Engineering Science, 2007, 62(9): 2318-2329. [6] YAO X, ZHANG Z H, ZHU H J, et al. Geopolymerization process of alkali-metakaolinite characterized by isothermal calorimetry[J]. Thermochimica Acta, 2009, 493(1/2): 49-54. [7] LI C, SUN H H, LI L T. A review: the comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements[J]. Cement and Concrete Research, 2010, 40(9): 1341-1349. [8] ZHANG Z. The effects of physical and chemical properties of fly ash on the manufacture of geopolymer foam concretes[D]. Toowoomba: University of Southern Queensland, 2014. [9] 王爱国, 王星尧, 孙道胜, 等. 地质聚合物凝结硬化及其调节技术的研究进展[J]. 材料导报, 2021, 35(13): 5-14. WANG A G, WANG X Y, SUN D S, et al. Research progress on setting and hardening of geopolymers and their control[J]. Materials Reports, 2021, 35(13): 5-14 (in Chinese). [10] 贺 敏, 仰宗宝, 李兆超, 等. 酸激发地质聚合物反应机理与力学性能研究进展[J]. 硅酸盐通报, 2023, 42(10): 3579-3593. HE M, YANG Z B, LI Z C, et al. Research progress on reaction mechanism and mechanical properties of aluminosilicate phosphate geopolymers[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(10): 3579-3593 (in Chinese). [11] 王 晴, 康升荣, 吴丽梅, 等. 地聚合物凝胶结构建模及分子动力学模拟[J]. 材料导报, 2020, 34(4): 4056-4061. WANG Q, KANG S R, WU L M, et al. Structural modeling and molecular dynamics simulation of geopolymers gel[J]. Materials Reports, 2020, 34(4): 4056-4061 (in Chinese). [12] 陈迎晓. 矿渣-偏高岭土基地聚合物凝结时间可控性研究[D]. 重庆: 重庆大学, 2018. CHEN Y X. Study on controllability of setting time of polymer in slag-metakaolin base[D]. Chongqing: Chongqing University, 2018 (in Chinese). [13] FERNÁNDEZ-JIMÉNEZ A, PALOMO A, SOBRADOS I, et al. The role played by the reactive alumina content in the alkaline activation of fly ashes[J]. Microporous and Mesoporous Materials, 2006, 91(1/2/3): 111-119. [14] SAGOE-CRENTSIL K, WENG L. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: part II. high Si/Al ratio systems[J]. Journal of Materials Science, 2007, 42(9): 3007-3014. [15] STEVESON M, SAGOE-CRENTSIL K. Relationships between composition, structure and strength of inorganic polymers[J]. Journal of Materials Science, 2005, 40(8): 2023-2036. [16] WHITE C E, PROVIS J L, PROFFEN T, et al. Molecular mechanisms responsible for the structural changes occurring during geopolymerization: multiscale simulation[J]. AIChE Journal, 2012, 58(7): 2241-2253. [17] CHEN X, SUTRISNO A, STRUBLE L J. Effects of calcium on setting mechanism of metakaolin-based geopolymer[J]. Journal of the American Ceramic Society, 2018, 101(2): 957-968. [18] KENNE DIFFO B B, ELIMBI A, CYR M, et al. Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers[J]. Journal of Asian Ceramic Societies, 2015, 3(1): 130-138. [19] CHEN X, SUTRISNO A, ZHU L Y, et al. Setting and nanostructural evolution of metakaolin geopolymer[J]. Journal of the American Ceramic Society, 2017, 100(5): 2285-2295. [20] MO B H, ZHU H, CUI X M, et al. Effect of curing temperature on geopolymerization of metakaolin-based geopolymers[J]. Applied Clay Science, 2014, 99: 144-148. [21] CHENG T W, CHIU J P. Fire-resistant geopolymer produced by granulated blast furnace slag[J]. Minerals Engineering, 2003, 16(3): 205-210. [22] 南相莉, 张廷安, 刘 燕, 等. 我国赤泥综合利用分析[J]. 过程工程学报, 2010, 10(增刊1): 264-270. NAN X L, ZHANG T A, LIU Y, et al. Analysis of comprehensive utilization of red mud in China[J]. The Chinese Journal of Process Engineering, 2010, 10(supplement 1): 264-270 (in Chinese). [23] KAYA K, SOYER-UZUN S. Evolution of structural characteristics and compressive strength in red mud-metakaolin based geopolymer systems[J]. Ceramics International, 2016, 42(6): 7406-7413. [24] LIU J P, LI X Y, LU Y S, et al. Effects of Na/Al ratio on mechanical properties and microstructure of red mud-coal metakaolin geopolymer[J]. Construction and Building Materials, 2020, 263: 120653. [25] HE J, ZHANG J H, YU Y Z, et al. The strength and microstructure of two geopolymers derived from metakaolin and red mud-fly ash admixture: a comparative study[J]. Construction and Building Materials, 2012, 30: 80-91. [26] SINGH S, ASWATH M U, RANGANATH R V. Effect of mechanical activation of red mud on the strength of geopolymer binder[J]. Construction and Building Materials, 2018, 177: 91-101. [27] KUMAR A, KUMAR S. Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization[J]. Construction and Building Materials, 2013, 38: 865-871. [28] BAYAT A, HASSANI A, YOUSEFI A A. Effects of red mud on the properties of fresh and hardened alkali-activated slag paste and mortar[J]. Construction and Building Materials, 2018, 167: 775-790. [29] DUXSON P, MALLICOAT S W, LUKEY G C, et al. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 292(1): 8-20. [30] ZHAO Y B, YANG C Q, LI K F, et al. Toward understanding the activation and hydration mechanisms of composite activated coal gangue geopolymer[J]. Construction and Building Materials, 2022, 318: 125999. [31] CHENG Y, MA H Q, CHEN H Y, et al. Preparation and characterization of coal gangue geopolymers[J]. Construction and Building Materials, 2018, 187: 318-326. [32] GENG J J, ZHOU M, ZHANG T, et al. Preparation of blended geopolymer from red mud and coal gangue with mechanical co-grinding preactivation[J]. Materials and Structures, 2016, 50(2): 109. [33] TEMUUJIN J, VAN RIESSEN A. Effect of fly ash preliminary calcination on the properties of geopolymer[J]. Journal of Hazardous Materials, 2009, 164(2/3): 634-639. [34] TEMUUJIN J, VAN RIESSEN A, WILLIAMS R. Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 82-88. [35] PULIGILLA S, CHEN X, MONDAL P. Does synthesized C-S-H seed promote nucleation in alkali activated fly ash-slag geopolymer binder?[J]. Materials and Structures, 2019, 52(4): 65. [36] LEE W K W, VAN DEVENTER J S J. The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements[J]. Cement and Concrete Research, 2002, 32(4): 577-584. [37] WATTIMENA O K, ANTONI, HARDJITO D. A review on the effect of fly ash characteristics and their variations on the synthesis of fly ash based geopolymer[C]//AIP Conference Proceedings. East Java, Indonesia, 2017. [38] FERNÁNDEZ-JIMÉNEZ A, PALOMO A, CRIADO M. Microstructure development of alkali-activated fly ash cement: a descriptive model[J]. Cement and Concrete Research, 2005, 35(6): 1204-1209. [39] ZHANG Z H, PROVIS J L, ZOU J, et al. Toward an indexing approach to evaluate fly ashes for geopolymer manufacture[J]. Cement and Concrete Research, 2016, 85: 163-173. [40] WIJAYA S W, HARDJITO D. Factors affecting the setting time of fly ash-based geopolymer[J]. Materials Science Forum, 2016, 841: 90-97. [41] LI Z P, XU G, SHI X M. Reactivity of coal fly ash used in cementitious binder systems: a state-of-the-art overview[J]. Fuel, 2021, 301: 121031. [42] 刘 鑫, 彭泽川, 潘晨豪, 等. 纳米二氧化硅改性粉煤灰地聚合物力学性能及微观分析[J]. 材料导报, 2020, 34(22): 22078-22082. LIU X, PENG Z C, PAN C H, et al. Mechanical properties and microscopic analysis of nano-silica modified fly ash geopolymer[J]. Materials Reports, 2020, 34(22): 22078-22082 (in Chinese). [43] XU X Q, BAO S X, ZHANG Y M, et al. Role of particle fineness and reactive silicon-aluminum ratio in mechanical properties and microstructure of geopolymers[J]. Construction and Building Materials, 2021, 313: 125483. [44] MUSADDIQ LASKAR S, TALUKDAR S. Development of ultrafine slag-based geopolymer mortar for use as repairing mortar[J]. Journal of Materials in Civil Engineering, 2017, 29(5): 04016292. [45] TALLING B, BRANDSTETR J. Present state and future of alkali-activated slag concretes[C]//Fly Ash, silica fume, slag, and natural pozzolans in concrete: proceedings of the third international conference. American Concrete Institute, 1989: 1591-1546. [46] BEN HAHA M, LOTHENBACH B, LE SAOUT G, et al. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag: part I: effect of MgO[J]. Cement and Concrete Research, 2011, 41(9): 955-963. [47] 梁健俊, 马玉玮, 黄 科, 等. 粉煤灰物理化学性能对碱激发材料的影响[J]. 硅酸盐通报, 2016, 35(8): 2497-2502. LIANG J J, MA Y W, HUANG K, et al. Influence of the physical and chemical properties of fly ash on the alkali-activated fly ash/slag[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(8): 2497-2502 (in Chinese). [48] ALEX T C, MUCSI G, VENUGOPALAN T, et al. BOF steel slag: critical assessment and integrated approach for utilization[J]. Journal of Sustainable Metallurgy, 2021, 7(4): 1407-1424. [49] SHI C J, QIAN J S. High performance cementing materials from industrial slags: a review[J]. Resources, Conservation and Recycling, 2000, 29(3): 195-207. [50] IONESCU B A, LĂZĂRESCU A V, HEGYI A. The possibility of using slag for the production of geopolymer materials and its influence on mechanical performances: a review[J]. Proceedings, 2020, 63(1): 30. [51] JIANG Y, LING T C, SHI C J, et al. Characteristics of steel slags and their use in cement and concrete: a review[J]. Resources, Conservation and Recycling, 2018, 136: 187-197. [52] GUO X L, SHI H S. Utilization of steel slag powder as a combined admixture with ground granulated blast-furnace slag in cement based materials[J]. Journal of Materials in Civil Engineering, 2013, 25(12): 1990-1993. [53] MIAH M J, PATOARY M M H, PAUL S C, et al. Enhancement of mechanical properties and porosity of concrete using steel slag coarse aggregate[J]. Materials, 2020, 13(12): 2865. [54] SAXENA S, TEMBHURKAR A R. Impact of use of steel slag as coarse aggregate and wastewater on fresh and hardened properties of concrete[J]. Construction and Building Materials, 2018, 165: 126-137. [55] BAI T, SONG Z G, WU Y G, et al. Influence of steel slag on the mechanical properties and curing time of metakaolin geopolymer[J]. Ceramics International, 2018, 44(13): 15706-15713. [56] SONG W, ZHU Z, PU S, et al. Efficient use of steel slag in alkali-activated fly ash-steel slag-ground granulated blast furnace slag ternary blends[J]. Construction and Building Materials, 2020, 259: 119814. [57] WANG Y H, XIAO R, HU W, et al. Effect of granulated phosphorus slag on physical, mechanical and microstructural characteristics of class F fly ash based geopolymer[J]. Construction and Building Materials, 2021, 291: 123287. [58] GONG C M, YANG N R. Effect of phosphate on the hydration of alkali-activated red mud-slag cementitius material[J]. Cement and Concrete Research, 2000, 30(7): 1013-1016. [59] 王全林. 不同养护方式下偏高岭土基地聚合物的制备及其性能研究[D]. 绍兴: 绍兴文理学院, 2021. WANG Q L. Preparation and properties of metakaolin-based polymers under different curing methods[D]. Shaoxing: Shaoxing University, 2021 (in Chinese). [60] PERNÁ I, HANZLÍČEK T. The setting time of a clay-slag geopolymer matrix: the influence of blast-furnace-slag addition and the mixing method[J]. Journal of Cleaner Production, 2016, 112: 1150-1155. [61] 刘 洋. 偏高岭土基地质聚合物在高温固井中应用的可行性研究[D]. 东营: 中国石油大学(华东), 2016. LIU Y. Feasibility study on application of metakaolin-based geopolymer in high temperature cementing[D]. Dongying: China University of Petroleum (Huadong), 2016 (in Chinese). [62] KUMAR S, KUMAR R, MEHROTRA S P. Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer[J]. Journal of Materials Science, 2010, 45(3): 607-615. [63] TOPARK-NGARM P, CHINDAPRASIRT P, SATA V. Setting time, strength, and bond of high-calcium fly ash geopolymer concrete[J]. Journal of Materials in Civil Engineering, 2015, 27(7): 04014198. [64] CHINDAPRASIRT P, CHAREERAT T, HATANAKA S, et al. High-strength geopolymer using fine high-calcium fly ash[J]. Journal of Materials in Civil Engineering, 2011, 23(3): 264-270. [65] ZHANG Y J, ZHAO Y L, LI H H, et al. Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag[J]. Journal of Materials Science, 2008, 43(22): 7141-7147. [66] 祝 贺. 碱矿渣基地质聚合物的制备及其高温性能研究[D]. 南宁: 广西大学, 2016. ZHU H. The preparation and high temperature performance research of alkali slag based geopolymer materials[D]. Nanning: Guangxi University, 2016 (in Chinese). [67] ISHWARYA G, SINGH B, DESHWAL S, et al. Effect of sodium carbonate/sodium silicate activator on the rheology, geopolymerization and strength of fly ash/slag geopolymer pastes[J]. Cement and Concrete Composites, 2019, 97: 226-238. [68] 林鹏程. 横山矿区低钙煤矸石制备地聚合物实验研究[D]. 西安: 西安科技大学, 2021. LIN P C. Experimental study on preparation of geopolymer from low calcium coal gangue in Hengshan mining area[D]. Xi’an: Xi’an University of Science and Technology, 2021 (in Chinese). [69] SONG W L, ZHU Z D, PENG Y Y, et al. Effect of steel slag on fresh, hardened and microstructural properties of high-calcium fly ash based geopolymers at standard curing condition[J]. Construction and Building Materials, 2019, 229: 116933. [70] 王 磊, 李金丞, 张晓伟, 等. 地质聚合物激发剂及其激发原理[J]. 无机盐工业, 2022, 54(2): 16-20. WANG L, LI J C, ZHANG X W, et al. Geopolymer activator and its excitation principle[J]. Inorganic Chemicals Industry, 2022, 54(2): 16-20 (in Chinese). [71] RAHIER H, WASTIELS J, BIESEMANS M, et al. Reaction mechanism, kinetics and high temperature transformations of geopolymers[J]. Journal of Materials Science, 2007, 42(9): 2982-2996. [72] MALKAWI A B, NURUDDIN M F, FAUZI A, et al. Effects of alkaline solution on properties of the HCFA geopolymer mortars[J]. Procedia Engineering, 2016, 148: 710-717. [73] YUAN J K, LI L Z, HE P G, et al. Effects of kinds of alkali-activated ions on geopolymerization process of geopolymer cement pastes[J]. Construction and Building Materials, 2021, 293: 123536. [74] DUXSON P, LUKEY G C, SEPAROVIC F, et al. Effect of alkali cations on aluminum incorporation in geopolymeric gels[J]. Industrial & Engineering Chemistry Research, 2005, 44(4): 832-839. [75] XU H, VAN DEVENTER J S J. The geopolymerisation of alumino-silicate minerals[J]. International Journal of Mineral Processing, 2000, 59(3): 247-266. [76] HE J, JIE Y X, ZHANG J H, et al. Synthesis and characterization of red mud and rice husk ash-based geopolymer composites[J]. Cement and Concrete Composites, 2013, 37: 108-118. [77] NANA A, NGOUNÉ J, KAZE R C, et al. Room-temperature alkaline activation of feldspathic solid solutions: development of high strength geopolymers[J]. Construction and Building Materials, 2019, 195: 258-268. [78] LING Y F, WANG K J, WANG X H, et al. Effects of mix design parameters on heat of geopolymerization, set time, and compressive strength of high calcium fly ash geopolymer[J]. Construction and Building Materials, 2019, 228: 116763. [79] PARK S, POUR-GHAZ M. What is the role of water in the geopolymerization of metakaolin?[J]. Construction and Building Materials, 2018, 182: 360-370. [80] ZHANG Z H, XIAO Y, ZHU H J, et al. Role of water in the synthesis of calcined kaolin-based geopolymer[J]. Applied Clay Science, 2009, 43(2): 218-223. [81] LIEW Y M, KAMARUDIN H, MUSTAFA AL BAKRI A M, et al. Calcined kaolin geopolymeric powder: influence of water-to-geopolymeric powder ratio[J]. Advanced Materials Research, 2012, 548: 48-53. [82] RANGAN B V. Fly ash-based geopolymer concrete[D]. Perth: Curtin University of Technology, 2008. [83] 李 款, 卢都友, 李孟浩, 等. 水用量对偏高岭土基地聚合物微观结构及反应过程的影响[J]. 硅酸盐学报, 2016, 44(2): 226-231. LI K, LU D Y, LI M H, et al. Effect of water content on microstructure and reaction process of metakaolin-based geopolymers[J]. Journal of the Chinese Ceramic Society, 2016, 44(2): 226-231 (in Chinese). [84] SLEIMAN H, PERROT A, AMZIANE S. A new look at the measurement of cementitious paste setting by Vicat test[J]. Cement and Concrete Research, 2010, 40(5): 681-686. [85] WU M M, SHEN W G, XIONG X, et al. Effects of the phosphogypsum on the hydration and microstructure of alkali activated slag pastes [J]. Construction and Building Materials, 2023, 368: 130391. [86] BERNAL S A, PROVIS J L, FERNÁNDEZ-JIMÉNEZ A, et al. Binder chemistry-high-calcium alkali-activated materials[M]. Dordrecht: Springer Netherlands, 2013: 59-91. [87] WANG J W, CHENG T W. Production geopolymer materials by coal fly ash[C]//Proceedings of the 7th International Symposium on East Asian Resources Recycling Technology, 2003: 263-266. [88] ROVNANÍK P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer[J]. Construction and Building Materials, 2010, 24(7): 1176-1183. [89] BURCIAGA-DÍAZ O, GÓMEZ-ZAMORANO L Y, ESCALANTE-GARCÍA J I. Influence of the long term curing temperature on the hydration of alkaline binders of blast furnace slag-metakaolin[J]. Construction and Building Materials, 2016, 113: 917-926. [90] PULIGILLA S, MONDAL P. Role of slag in microstructural development and hardening of fly ash-slag geopolymer[J]. Cement and Concrete Research, 2013, 43: 70-80. [91] KUENZEL C, RANJBAR N. Dissolution mechanism of fly ash to quantify the reactive aluminosilicates in geopolymerisation[J]. Resources, Conservation and Recycling, 2019, 150: 104421. [92] RANJBAR N, KUENZEL C. Cenospheres: a review[J]. Fuel, 2017, 207: 1-12. [93] ZHANG Z H, YAO X, ZHU H J, et al. Activating process of geopolymer source material: kaolinite[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2009, 24(1): 132-136. [94] LANCELLOTTI I, CATAURO M, PONZONI C, et al. Inorganic polymers from alkali activation of metakaolin: effect of setting and curing on structure[J]. Journal of Solid State Chemistry, 2013, 200: 341-348. [95] ZHANG Z H, YAO X, ZHU H J. Potential application of geopolymers as protection coatings for marine concrete II. microstructure and anticorrosion mechanism[J]. Applied Clay Science, 2010, 49(1/2): 7-12. [96] RANJBAR N, KASHEFI A, MAHERI M R. Hot-pressed geopolymer: dual effects of heat and curing time[J]. Cement and Concrete Composites, 2018, 86: 1-8. [97] DO Q M, NGO P M, NGUYEN H T. Characteristics of a fly ash-based geopolymer cured in microwave oven[J]. Key Engineering Materials, 2020, 850: 63-69. [98] 张志强, 周栋梁, 李付刚, 等. 碱-矿渣水泥缓凝物质的选择研究[J]. 混凝土, 2008(8): 63-64+68. ZHANG Z Q, ZHOU D L, LI F G, et al. Selection of retarder of alkali activated slag cement[J]. Concrete, 2008(8): 63-64+68 (in Chinese). [99] RATTANASAK U, PANKHET K, CHINDAPRASIRT P. Effect of chemical admixtures on properties of high-calcium fly ash geopolymer[J]. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(3): 364-369. [100] LEA F M, HEWLETT P C A L. Lea’s chemistry of cement and concrete[M]. Array Kidlington, Oxford: Butterworth-Heinemann, 2019. [101] TAYLOR H F W. Cement chemistry[M]. 2nd ed. London: Thomas Telford, 1997. [102] WANG L, GEDDES D A, WALKLEY B, et al. The role of zinc in metakaolin-based geopolymers[J]. Cement and Concrete Research, 2020, 136: 106194. [103] CONG X Y, ZHOU W, GENG X R, et al. Low field NMR relaxation as a probe to study the effect of activators and retarders on the alkali-activated GGBFS setting process[J]. Cement and Concrete Composites, 2019, 104: 103399. [104] ZHANG L L, JI Y S, LI J, et al. Effect of retarders on the early hydration and mechanical properties of reactivated cementitious material[J]. Construction and Building Materials, 2019, 212: 192-201. [105] DU W F, KURAOKA K, AKAI T, et al. Study of Al2O3 effect on structural change and phase separation in Na2O-B2O3-SiO2 glass by NMR[J]. Journal of Materials Science, 2000, 35(19): 4865-4871. [106] SASAKI K, KURUMISAWA K, IBAYASHI K. Effect of retarders on flow and strength development of alkali-activated fly ash/blast furnace slag composite[J]. Construction and Building Materials, 2019, 216: 337-346. [107] JAMIL N N B. The Effect of natural retarder on geopolymer concrete with different curing regime[D]. Tronoh: Universiti Teknologi Petronas, 2010. [108] ASSI L N, DEAVER E, ZIEHL P. Using sucrose for improvement of initial and final setting times of silica fume-based activating solution of fly ash geopolymer concrete[J]. Construction and Building Materials, 2018, 191: 47-55. [109] PHOO-NGERNKHAM T, CHINDAPRASIRT P, SATA V, et al. The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature[J]. Materials & Design, 2014, 55: 58-65. [110] XIE T Y, FANG C F. Nanomaterials applied in modifications of geopolymer composites: a review[J]. Australian Journal of Civil Engineering, 2019, 17(1): 32-49. |
[1] | CHU Lijing, ZHUO Kexian, YANG Zeming, LI Chaosen, LIU Run’an, LIN Jiaxiang. Experimental Study on Interfacial Bonding Performance Between Engineered Geopolymer Composites with Hybrid PE/PVA Fiber and Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 463-473. |
[2] | JIA Rui, CHU Zhenxing. Research Status and Progress on Solidifying Soft Clay by Geopolymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 490-500. |
[3] | YANG Xuqing, WANG Hui, GAO Shang, GUO Meili, MENG Zehao, WU Yueyu. Effect of High Temperature on Properties of Fly Ash-Slag Based Porous Geopolymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 561-568. |
[4] | HUANG Ziyu, DING Zhiyao, CAO Dan, SHEN Ding, YAO Shunyu, CHEN Yiren, REN Yanzeng, BAO Shenxu. Ratio Optimization and Characterization of Multi-Solid Waste-Based Geopolymer by Response Surface Method [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 569-578. |
[5] | LU Junhui, LYU Hai, LI Junyuan, YANG Haifeng, CAO Huayi. Interfacial Bond-Slip Performance of Square Aluminum Alloy Tube-Seawater Sea-Sand Geopolymer Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(1): 90-100. |
[6] | ZHANG Zhenyang, ZHANG Lu, YI Haihe, ZHENG Run, MA Keshun, ZHANG Lin, REN Mengqi, WANG Chunguang. Mechanical Properties of Geopolymer Concrete Based on Response Surface Method [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3192-3202. |
[7] | WANG Xiaoxiao, DONG Peisen, YANG Xinrui, ZHANG Ju, YAN Changwang, DONG Yufei. Mechanical Properties of Steel Fiber Geopolymer Concrete under Low Temperature [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3203-3213. |
[8] | YU Jinhu, LI Qiang, LIU Xueying, ZHOU Shuguang, WANG Chao. Research Progress on Chloride Ion Penetration Resistance of Geopolymer Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2503-2513. |
[9] | WU Qiugang, ZHAO Heng, LIU Wei, WANG Xinfu, WANG Yanjun, HE Jianguo, ZHANG Mei, ZHU Bei. Preparation and Microanalysis of Geopolymer Low-Strength Grouting Material Based on Self-Combusting Gangue [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2539-2547. |
[10] | PENG Lijuan, KE Guojun, SONG Baixing, JIANG Tian, WANG Wenqing. Fluidity and Mechanical Properties of Waste Glass Powder-Metakaolin Geopolymer Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2168-2175. |
[11] | NIU Jiadong, DU Yunxing, ZHANG Zicheng, LI Yanqiu, QIN Baokun. Performance of Slag-Based Geopolymer Flow Shield-Cured Soil [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2176-2185. |
[12] | HUANG Dajian, WANG Zhiwu, TANG Wenjie, ZHANG Quanchao, QIANG Xiaohu. Effect of Curing Environment on Properties and Microstructure of Metakaolin Based Geopolymers [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(4): 1463-1471. |
[13] | GUO Qiang, ZHANG Xiaolei, SHI Chenxi, MEN Jie. Mechanical Properties of Red Mud-Slag Based Geopolymer Solidified Loess after Freeze-Thaw Cycle [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(4): 1482-1489. |
[14] | NING Huiyuan, ZHANG Ju, YAN Changwang, BAI Ru. Prediction and Analysis of Strength Response of Calcium Carbide Slag Excited Coal Gangue Geopolymer Based on Gaussian Process Regression Model [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(3): 905-913. |
[15] | LENG Lingye, ZHANG Pengfei, LIANG Wenwen. Dynamic Compressive Mechanical Behavior of Basalt Fiber Reinforced Geopolymer Concrete under High Temperature [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(3): 914-921. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||