BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2025, Vol. 44 ›› Issue (2): 490-500.DOI: 10.16552/j.cnki.issn1001-1625.2024.1105
• Solid Waste and Eco-Materials • Previous Articles Next Articles
JIA Rui1,2, CHU Zhenxing1,2
Received:
2024-09-14
Revised:
2024-10-15
Online:
2025-02-15
Published:
2025-02-28
CLC Number:
JIA Rui, CHU Zhenxing. Research Status and Progress on Solidifying Soft Clay by Geopolymer[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 490-500.
[1] 中华人民共和国建设部. 岩土工程勘察规范: GB 50021—2001[S]. 北京: 中国建筑工业出版社, 2004. Ministry of Construction of the People’s Republic of China. Code for investigation of geotechnical engineering: GB 50021—2001[S]. Beijing: China Architecture & Building Press, 2004 (in Chinese). [2] 龚晓南. 地基处理手册[M]. 3版. 北京: 中国建筑工业出版社, 2008. GONG X N. Ground improvement handbook[M]. 3rd ed. Beijing: China Architecture & Building Press, 2008 (in Chinese). [3] 龚晓南. 地基处理技术发展与展望[M]. 北京: 中国水利水电出版社, 2004. GONG X N. Development and prospect of ground improvement techniques[M]. Beijing: China Water & Power Press, 2004 (in Chinese). [4] ANDREW R M. Global CO2 emissions from cement production, 1928—2017[J]. Earth System Science Data, 2018, 10(4): 2213-2239. [5] DAVIDOVITS J. Geopolymers and geopolymeric materials[J]. Journal of Thermal Analysis, 1989, 35(2): 429-441. [6] 吴小缓, 张 杨, 袁 鹏, 等. 地质聚合物的研究进展与应用[J]. 硅酸盐通报, 2016, 35(12): 4032-4037. WU X H, ZHANG Y, YUAN P, et al. Research progress and applications of geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(12): 4032-4037 (in Chinese). [7] 倪 文, 王 恩, 周 佳. 地质聚合物: 21世纪的绿色胶凝材料[J]. 新材料产业, 2003(6): 24-28. NI W, WANG E, ZHOU J. Geopolymer: green cementitious material in the 21st century[J]. Advanced Materials Industry, 2003(6): 24-28 (in Chinese). [8] RICHARDSON I G, BROUGH A R, GROVES G W, et al. The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C-S-H) phase[J]. Cement and Concrete Research, 1994, 24(5): 813-829. [9] 王爱国, 王星尧, 孙道胜, 等. 地质聚合物凝结硬化及其调节技术的研究进展[J]. 材料导报, 2021, 35(13): 5-14. WANG A G, WANG X Y, SUN D S, et al. Research progress on setting and hardening of geopolymers and their control[J]. Materials Reports, 2021, 35(13): 5-14 (in Chinese). [10] YAGHOUBI M, ARULRAJAH A, HORPIBULSUK S. Engineering behaviour of a geopolymer-stabilised high-water content soft clay[J]. International Journal of Geosynthetics and Ground Engineering, 2022, 8(3): 45. [11] GUPTA S, KUMAR S. Mechanical and microstructural analysis of soft Kaolin clay stabilized by GGBS and dolomite-based geopolymer[J]. Construction and Building Materials, 2024, 421: 135702. [12] 俞家人, 陈永辉, 陈 庚, 等. 地聚物固化软黏土的力学特征及机理分析[J]. 建筑材料学报, 2020, 23(2): 364-371. YU J R, CHEN Y H, CHEN G, et al. Mechanical behaviour of geopolymer stabilized clay and its mechanism[J]. Journal of Building Materials, 2020, 23(2): 364-371 (in Chinese). [13] SARGENT P, HUGHES P N, ROUAINIA M. A new low carbon cementitious binder for stabilising weak ground conditions through deep soil mixing[J]. Soils and Foundations, 2016, 56(6): 1021-1034. [14] PHUMMIPHAN I, HORPIBULSUK S, RACHAN R, et al. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material[J]. Journal of Hazardous Materials, 2018, 341: 257-267. [15] PHETCHUAY C, HORPIBULSUK S, ARULRAJAH A, et al. Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer[J]. Applied Clay Science, 2016, 127: 134-142. [16] 吴燕开, 胡晓士, 胡 锐, 等. 烧碱激发钢渣粉在淤泥质土中的试验研究[J]. 岩土工程学报, 2017, 39(12): 2187-2194. WU Y K, HU X S, HU R, et al. Experimental study on caustic soda-activated steel slag powder in muddy soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2187-2194 (in Chinese). [17] 王东星, 王宏伟, 邹维列, 等. 碱激发粉煤灰固化淤泥微观机制研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 3197-3205. WANG D X, WANG H W, ZOU W L, et al. Research on micro-mechanisms of dredged sludge solidified with alkali-activated fly ash[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(supplement 1): 3197-3205 (in Chinese). [18] MURMU A L, DHOLE N, PATEL A. Stabilisation of black cotton soil for subgrade application using fly ash geopolymer[J]. Road Materials and Pavement Design, 2020, 21(3): 867-885. [19] GHADIR P, RANJBAR N. Clayey soil stabilization using geopolymer and Portland cement[J]. Construction and Building Materials, 2018, 188: 361-371. [20] MIRAKI H, SHARIATMADARI N, GHADIR P, et al. Clayey soil stabilization using alkali-activated volcanic ash and slag[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(2): 576-591. [21] ZHANG M, GUO H, EL-KORCHI T, et al. Experimental feasibility study of geopolymer as the next-generation soil stabilizer[J]. Construction and Building Materials, 2013, 47: 1468-1478. [22] GUO Q, WEI M L, WU H L, et al. Strength and micro-mechanism of MK-blended alkaline cement treated high plasticity clay[J]. Construction and Building Materials, 2020, 236: 117567. [23] 吴 俊, 征西遥, 杨爱武, 等. 矿渣-粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J]. 岩土力学, 2021, 42(3): 647-655. WU J, ZHENG X Y, YANG A W, et al. Experimental study on the compressive strength of muddy clay solidified by the one-part slag-fly ash based geopolymer[J]. Rock and Soil Mechanics, 2021, 42(3): 647-655 (in Chinese). [24] YAGHOUBI M, ARULRAJAH A, DISFANI M M, et al. Effects of industrial by-product based geopolymers on the strength development of a soft soil[J]. Soils and Foundations, 2018, 58(3): 716-728. [25] SAMUEL R, PUPPALA A J, RADOVIC M. Sustainability benefits assessment of metakaolin-based geopolymer treatment of high plasticity clay[J]. Sustainability, 2020, 12(24): 10495. [26] YU J R, CHEN Y H, CHEN G, et al. Experimental study of the feasibility of using anhydrous sodium metasilicate as a geopolymer activator for soil stabilization[J]. Engineering Geology, 2020, 264: 105316. [27] JIANG N J, DU Y J, LIU K. Durability of lightweight alkali-activated ground granulated blast furnace slag (GGBS) stabilized clayey soils subjected to sulfate attack[J]. Applied Clay Science, 2018, 161: 70-75. [28] ARULRAJAH A, YAGHOUBI M, DISFANI M M, et al. Evaluation of fly ash- and slag-based geopolymers for the improvement of a soft marine clay by deep soil mixing[J]. Soils and Foundations, 2018, 58(6): 1358-1370. [29] GUO H Z, ZHANG B F, DENG L L, et al. Preparation of high-performance silico-aluminophosphate geopolymers using fly ash and metakaolin as raw materials[J]. Applied Clay Science, 2021, 204: 106019. [30] SELLAMI M, BARRE M, TOUMI M. Synthesis, thermal properties and electrical conductivity of phosphoric acid-based geopolymer with metakaolin[J]. Applied Clay Science, 2019, 180: 105192. [31] 党永发, 李晓光. 酸激发提高钢渣、矿渣复合粉水硬活性的研究[J]. 中国粉体技术, 2006, 12(5): 16-18. DANG Y F, LI X G. Improvement of cementitous activation of composite powder made of steel slag and furnace slag with acid[J]. China Powder Science and Technology, 2006, 12(5): 16-18 (in Chinese). [32] 方旭彬, 李兆锋, 吴祥福, 等. 酸性激发剂激发钢渣替代部分水泥熟料的机理研究[J]. 混凝土, 2007(8): 49-51. FANG X B, LI Z F, WU X F, et al. Mechanism investigation of acid exciting steel slag substituting part cement clinker[J]. Concrete, 2007(8): 49-51 (in Chinese). [33] KHALE D, CHAUDHARY R. Mechanism of geopolymerization and factors influencing its development: a review[J]. Journal of Materials Science, 2007, 42(3): 729-746. [34] HUANG J X, KOGBARA R B, HARIHARAN N, et al. A state-of-the-art review of polymers used in soil stabilization[J]. Construction and Building Materials, 2021, 305: 124685. [35] CASTILLO H, COLLADO H, DROGUETT T, et al. State of the art of geopolymers: a review[J]. e-Polymers, 2022, 22(1): 108-124. [36] MATSIMBE J, DINKA M, OLUKANNI D, et al. Geopolymer: a systematic review of methodologies[J]. Materials, 2022, 15(19): 6852. [37] ZAREECHIAN M, SIAD H, LACHEMI M, et al. Advancements in cleaner production of one-part geopolymers: a comprehensive review of mechanical properties, durability, and microstructure[J]. Construction and Building Materials, 2023, 409: 133876. [38] YAO J L, QIU H J, HE H, et al. Application of a soft soil stabilized by composite geopolymer[J]. Journal of Performance of Constructed Facilities, 2021, 35(4): 04021018. [39] CORRÊA-SILVA M, CRISTELO N, ROUAINIA M, et al. Constitutive behaviour of a clay stabilised with alkali-activated cement based on blast furnace slag[J]. Sustainability, 2022, 14(21): 13736. [40] 马冬冬, 马芹永, 黄 坤, 等. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究[J]. 岩土工程学报, 2021, 43(3): 572-578. MA D D, MA Q Y, HUANG K, et al. Pore structure and dynamic mechanical properties of geopolymer cement soil based on nuclear magnetic resonance technique[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 572-578 (in Chinese). [41] CORRÊA-SILVA M, MIRANDA T, ROUAINIA M, et al. Geomechanical behaviour of a soft soil stabilised with alkali-activated blast-furnace slags[J]. Journal of Cleaner Production, 2020, 267: 122017. [42] LI J F, SHAN Y, NI P P, et al. Multiscale experimental analysis of marine clay stabilized with coal gangue-calcium carbide residue geopolymer[J]. Acta Geotechnica, 2023, 18(11): 5921-5939. [43] MOZUMDER R A, LASKAR A I. Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using Artificial Neural Network[J]. Computers and Geotechnics, 2015, 69: 291-300. [44] CRISTELO N, GLENDINNING S, FERNANDES L, et al. Effects of alkaline-activated fly ash and Portland cement on soft soil stabilisation[J]. Acta Geotechnica, 2013, 8(4): 395-405. [45] CRISTELO N, GLENDINNING S, FERNANDES L, et al. Effect of calcium content on soil stabilisation with alkaline activation[J]. Construction and Building Materials, 2012, 29: 167-174. [46] ODEH N A, AL-RKABY A H J. Strength, durability, and microstructures characterization of sustainable geopolymer improved clayey soil[J]. Case Studies in Construction Materials, 2022, 16: e00988. [47] ALSAFI S, FARZADNIA N, ASADI A, et al. Collapsibility potential of gypseous soil stabilized with fly ash geopolymer; characterization and assessment[J]. Construction and Building Materials, 2017, 137: 390-409. [48] LANG L, CHEN B, LI N. Utilization of lime/carbide slag-activated ground granulated blast-furnace slag for dredged sludge stabilization[J]. Marine Georesources & Geotechnology, 2021, 39(6): 659-669. [49] MURMU A L, JAIN A, PATEL A. Mechanical properties of alkali activated fly ash geopolymer stabilized expansive clay[J]. KSCE Journal of Civil Engineering, 2019, 23(9): 3875-3888. [50] CHEN K Y, WU D Z, ZHANG Z L, et al. Modeling and optimization of fly ash-slag-based geopolymer using response surface method and its application in soft soil stabilization[J]. Construction and Building Materials, 2022, 315: 125723. [51] ABDULLAH H H, SHAHIN M A, WALSKE M L. Geo-mechanical behavior of clay soils stabilized at ambient temperature with fly-ash geopolymer-incorporated granulated slag[J]. Soils and Foundations, 2019, 59(6): 1906-1920. [52] 孙秀丽, 童 琦, 刘文化, 等. 碱激发粉煤灰和矿粉改性疏浚淤泥力学特性及显微结构研究[J]. 大连理工大学学报, 2017, 57(6): 622-628. SUN X L, TONG Q, LIU W H, et al. Study of microstructure and mechanical properties of dredged silt solidified using fly ash and slag stimulated by alkali[J]. Journal of Dalian University of Technology, 2017, 57(6): 622-628 (in Chinese). [53] THOMAS A, TRIPATHI R K, YADU L K. A laboratory investigation of soil stabilization using enzyme and alkali-activated ground granulated blast-furnace slag[J]. Arabian Journal for Science and Engineering, 2018, 43(10): 5193-5202. [54] NOOLU V, MALLIKARJUNA RAO G, SUDHEER KUMAR REDDY B, et al. Strength and durability characteristics of GGBS geopolymer stabilized black cotton soil[J]. Materials Today: Proceedings, 2021, 43: 2373-2376. [55] CORRÊA-SILVA M, ARAÚJO N, CRISTELO N, et al. Improvement of a clayey soil with alkali activated low-calcium fly ash for transport infrastructures applications[J]. Road Materials and Pavement Design, 2019, 20(8): 1912-1926. [56] SILVA M C A. Stress-strain response of soft soils stabilised with alkali activated industrial by-products[D]. Portugal: Universidade do Minho, Portugal, 2022: 132-133. [57] DUNGCA J R. Vertical permeability of dredged soil stabilized with fly-ash based geopolymer for road embankment[J]. International Journal of GEOMATE, 2019, 17(59): 8-14. [58] TEMUUJIN J, MINJIGMAA A, LEE M, et al. Characterisation of class F fly ash geopolymer pastes immersed in acid and alkaline solutions[J]. Cement and Concrete Composites, 2011, 33(10): 1086-1091. [59] RIVERA J F, OROBIO A, CRISTELO N, et al. Fly ash-based geopolymer as A4 type soil stabiliser[J]. Transportation Geotechnics, 2020, 25: 100409. [60] 陈忠清, 朱泽威, 吕 越. 粉煤灰基地聚物加固土的强度及抗冻融性能试验研究[J]. 水文地质工程地质, 2022, 49(4): 100-108. CHEN Z Q, ZHU Z W, LYU Y. Laboratory investigation on the strength and freezing-thawing resistance of fly ash based geopolymer stabilized soil[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 100-108 (in Chinese). [61] SAHOO S, PRASAD SINGH S. Strength and durability properties of expansive soil treated with geopolymer and conventional stabilizers[J]. Construction and Building Materials, 2022, 328: 127078. [62] 孙家瑛, 王志新, 戴亚英, 等. 地聚合物灌浆材料在公路软土地基处理中的应用[J]. 铁道科学与工程学报, 2005, 2(2): 62-65. SUN J Y, WANG Z X, DAI Y Y, et al. The application of geopolymer grouting material in the treatment of road soft soil[J]. Journal of Railway Science and Engineering, 2005, 2(2): 62-65 (in Chinese). [63] 龚鲁义. 英达地聚物注浆技术在常州成功应用[J]. 市政技术, 2020, 38(2): 5-7. GONG L Y. Freetech polymer grouting technology has been successfully applied in Changzhou[J]. Municipal Engineering Technology, 2020, 38(2): 5-7 (in Chinese). [64] 陈忠清, 丁佩思, 吕 越, 等. 炉渣-粉煤灰地聚合物固化铜污染土[J]. 有色金属工程, 2023, 13(9): 161-169. CHEN Z Q, DING P S, LYU Y, et al. Solidification of copper contaminated soil by fly ash based geopolymer with bottom ash[J]. Nonferrous Metals Engineering, 2023, 13(9): 161-169 (in Chinese). [65] 王均溢, 仲伟仁, 杨 溢, 等. 地质聚合物复合材料固化稳定化铬污染土[J]. 广州化工, 2023, 51(22): 84-86. WANG J Y, ZHONG W R, YANG Y, et al. Study on solidifying and stabilizing chromium-contaminated soil with geopolymer composite[J]. Guangzhou Chemical Industry, 2023, 51(22): 84-86 (in Chinese). [66] 高 绮, 刘 霖, 宋向阳, 等. 矿渣地质聚合物增强水泥固化Zn2+及苯酚污染土强度研究[J]. 内蒙古工业大学学报(自然科学版), 2024, 43(1): 77-81. GAO Q, LIU L, SONG X Y, et al. Enhancing strength of cement solidified Zn2+ and phenol contaminated soil with slag geopolymer[J]. Journal of Inner Mongolia University of Technology (Natural Science Edition), 2024, 43(1): 77-81 (in Chinese). |
[1] | LI Chao, LI Zhikang, LI Xinyu, HUANG Yongliang, WANG Wu, LUO Zhengdong, LI Wenjia, XU Fu. Review on Factors Affecting Setting and Hardening Characteristics of Geopolymers [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 501-514. |
[2] | CHU Lijing, ZHUO Kexian, YANG Zeming, LI Chaosen, LIU Run’an, LIN Jiaxiang. Experimental Study on Interfacial Bonding Performance Between Engineered Geopolymer Composites with Hybrid PE/PVA Fiber and Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 463-473. |
[3] | YANG Xuqing, WANG Hui, GAO Shang, GUO Meili, MENG Zehao, WU Yueyu. Effect of High Temperature on Properties of Fly Ash-Slag Based Porous Geopolymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 561-568. |
[4] | HUANG Ziyu, DING Zhiyao, CAO Dan, SHEN Ding, YAO Shunyu, CHEN Yiren, REN Yanzeng, BAO Shenxu. Ratio Optimization and Characterization of Multi-Solid Waste-Based Geopolymer by Response Surface Method [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 569-578. |
[5] | LU Junhui, LYU Hai, LI Junyuan, YANG Haifeng, CAO Huayi. Interfacial Bond-Slip Performance of Square Aluminum Alloy Tube-Seawater Sea-Sand Geopolymer Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(1): 90-100. |
[6] | XUE Lutao, LI Yubiao, WU Xiaoyong, LI Rui, SUN Xuchao, WU Kaizhen, CHI Ru’an. Experimental Study on Hydration Activity Modification of Fluorgypsum [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(1): 223-230. |
[7] | DOU Zhanshuang, LI Xiaomin, QIN Hongtao, WEI Dingbang, WU Xu, YAN Sheng, ZHANG Fuqiang, HAN Fangyuan. Mechanical Properties and Hydration Mechanism of Chemically Activated High Content Fly Ash Composite Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(1): 243-252. |
[8] | ZHANG Zhenyang, ZHANG Lu, YI Haihe, ZHENG Run, MA Keshun, ZHANG Lin, REN Mengqi, WANG Chunguang. Mechanical Properties of Geopolymer Concrete Based on Response Surface Method [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3192-3202. |
[9] | WANG Xiaoxiao, DONG Peisen, YANG Xinrui, ZHANG Ju, YAN Changwang, DONG Yufei. Mechanical Properties of Steel Fiber Geopolymer Concrete under Low Temperature [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3203-3213. |
[10] | YU Jinhu, LI Qiang, LIU Xueying, ZHOU Shuguang, WANG Chao. Research Progress on Chloride Ion Penetration Resistance of Geopolymer Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2503-2513. |
[11] | WU Qiugang, ZHAO Heng, LIU Wei, WANG Xinfu, WANG Yanjun, HE Jianguo, ZHANG Mei, ZHU Bei. Preparation and Microanalysis of Geopolymer Low-Strength Grouting Material Based on Self-Combusting Gangue [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2539-2547. |
[12] | PENG Lijuan, KE Guojun, SONG Baixing, JIANG Tian, WANG Wenqing. Fluidity and Mechanical Properties of Waste Glass Powder-Metakaolin Geopolymer Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2168-2175. |
[13] | NIU Jiadong, DU Yunxing, ZHANG Zicheng, LI Yanqiu, QIN Baokun. Performance of Slag-Based Geopolymer Flow Shield-Cured Soil [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2176-2185. |
[14] | CAO Qikun, JING Haoxing, LI Hao. Optimization of Fly Ash Foam Concrete Mix Proportion Based on Response Surface Methodology [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(4): 1427-1435. |
[15] | HUANG Dajian, WANG Zhiwu, TANG Wenjie, ZHANG Quanchao, QIANG Xiaohu. Effect of Curing Environment on Properties and Microstructure of Metakaolin Based Geopolymers [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(4): 1463-1471. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||