[1] 中国粉煤灰综合利用正全面发展: 粉煤灰材料分会2020年度行业发展报告[J]. 混凝土世界, 2021(10): 28-29. Comprehensive utilization of fly ash is developing in an all-round way in China—industry development report of fly ash materials branch in 2020[J]. China Concrete, 2021(10): 28-29 (in Chinese). [2] 王晓丽, 李秋义, 陈帅超, 等. 工业固体废弃物在新型建材领域中的应用研究与展望[J]. 硅酸盐通报, 2019, 38(11): 3456-3464. WANG X L, LI Q Y, CHEN S C, et al. Application research and prospect of industrial soild waste in new building materials[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(11): 3456-3464 (in Chinese). [3] 乔 亮, 兰天翔, 李绪萍, 等. 粉煤灰综合利用研究现状及发展建议[J]. 中国煤炭工业, 2021(4): 64-65. QIAO L, LAN T X, LI X P, et al. Research status and development suggestions of comprehensive utilization of fly ash[J]. China Coal Industry, 2021(4): 64-65 (in Chinese). [4] 李茂辉, 杨志强, 王有团, 等. 粉煤灰复合胶凝材料充填体强度与水化机理研究[J]. 中国矿业大学学报, 2015, 44(4): 650-655+695. LI M H, YANG Z Q, WANG Y T, et al. Experiment study of compressive strength and mechanical property of filling body for fly ash composite cementitious materials[J]. Journal of China University of Mining & Technology, 2015, 44(4): 650-655+695 (in Chinese). [5] 唐力军, 刘卫东, 陈凯伦. 超细活性粉煤灰对碱激发矿渣体系的影响研究[J]. 粉煤灰综合利用, 2022, 36(4): 92-97. TANG L J, LIU W D, CHEN K L. Study on the effect of reactive ultra-fine fly ash on alkali-activated slag system[J]. Fly Ash Comprehensive Utilization, 2022, 36(4): 92-97 (in Chinese). [6] 庄培镇. 碱激发粉煤灰/矿渣微观力学性能的研究[D]. 广州: 广州大学, 2023. ZHUANG P Z. Study on micromechanical properties of alkali-activated fly ash/slag[D]. Guangzhou: Guangzhou University, 2023 (in Chinese). [7] 杨 达, 庞来学, 宋 迪, 等. 粉煤灰对碱激发矿渣/粉煤灰体系的作用机理研究[J]. 硅酸盐通报, 2021, 40(9): 3005-3011. YANG D, PANG L X, SONG D, et al. Reaction mechanism of fly ash in alkali-activated slag/fly ash system[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(9): 3005-3011 (in Chinese). [8] 童国庆, 张吾渝, 高义婷, 等. 碱激发粉煤灰地聚物的力学性能及微观机制研究[J]. 材料导报, 2022, 36(4): 129-134. TONG G Q, ZHANG W Y, GAO Y T, et al. Mechanical properties and micromechanism of alkali-activated fly ash geopolymer[J]. Materials Reports, 2022, 36(4): 129-134 (in Chinese). [9] 程国东, 黄天勇, 刘 泽, 等. 粉煤灰-矿渣基地聚合物胶砂性能研究[J]. 新型建筑材料, 2020, 47(1): 50-53. CHENG G D, HUANG T Y, LIU Z, et al. Research on the performance of ash-slag based geopolymer mortar[J]. New Building Materials, 2020, 47(1): 50-53 (in Chinese). [10] 彭玉清, 郭荣鑫, 林志伟, 等. 粉煤灰-矿渣基地聚合物砂浆凝结时间及力学性能试验研究[J]. 新型建筑材料, 2021, 48(12): 138-144. PENG Y Q, GUO R X, LIN Z W, et al. Experimental study on setting time and mechanical properties of fly ash-slag geopolymer mortar[J]. New Building Materials, 2021, 48(12): 138-144 (in Chinese). [11] 张 琰, 刘华清, 刘佳龙, 等. 三异丙醇胺-碳酸钠协同激发矿渣-粉煤灰体系的力学性能和水化历程[J]. 新型建筑材料, 2022, 49(7): 104-109. ZHANG Y, LIU H Q, LIU J L, et al. Mechanical property and hydration kinetics of slag-fly ash blends activated with triisopropanolamine and sodium carbonate[J]. New Building Materials, 2022, 49(7): 104-109 (in Chinese). [12] 刘淑贤, 苏 严, 杨 敏, 等. 钢渣: 矿渣复合胶凝材料的制备及胶凝活性激发试验研究[J]. 金属矿山, 2022(11): 252-258. LIU S X, SU Y, YANG M, et al. Experimental study on preparation of the steel slag and slag composite cementitious material and its gelling activity inspiration[J]. Metal Mine, 2022(11): 252-258 (in Chinese). [13] 肖力光, 雒 锋, 王淑娟. 镁渣胶凝材料强度影响因素的研究[J]. 建筑材料学报, 2011, 14(5): 680-684. XIAO L G, LUO F, WANG S J. Study of factors influencing strength of magnesium slag cementitious material[J]. Journal of Building Materials, 2011, 14(5): 680-684 (in Chinese). [14] 卢前明, 王 震, 张瑞林, 等. 化学外加剂对粉煤灰-矿渣-水泥胶凝体系的激发作用[J]. 硅酸盐通报, 2018, 37(8): 2516-2521. LU Q M, WANG Z, ZHANG R L, et al. Excitation function of chemical admixture on fly ash-slag-cement cementitious system[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(8): 2516-2521 (in Chinese). [15] 孙国文, 汤青青, 张丽娟, 等. 大掺量粉煤灰早期活性激发及其作用机理[J]. 哈尔滨工程大学学报, 2019, 40(3): 540-547. SUN G W, TANG Q Q, ZHANG L J, et al. Early activation effect and mechanism of high-volume fly ash[J]. Journal of Harbin Engineering University, 2019, 40(3): 540-547 (in Chinese). [16] 李东旭. 低钙粉煤灰在不同碱环境中的活化研究[J]. 材料导报, 2000, 14(11): 59-61. LI D X. Study of activation of low calcium fly ash in the different alkali surroundings[J]. Materials Review, 2000, 14(11): 59-61 (in Chinese). [17] 蔡跃波, 罗 睿, 王昌义. 水泥-磨细矿渣水化产物—F盐的微结构分析[J]. 水利水运工程学报, 2001(1): 45-49. CAI Y B, LUO R, WANG C Y. Microstructure analysis on Friedel's salt in hydrate of cement and GGBS[J]. Hydro-Science and Engineering, 2001(1): 45-49 (in Chinese). [18] 魏 威, 高彦斌, 陈忠清, 等. 室温碱激发低钙粉煤灰地质聚合物配比试验研究[J]. 硅酸盐通报, 2020, 39(12): 3889-3896. WEI W, GAO Y B, CHEN Z Q, et al. Experimental study on proportion of room temperature alkali-activated low-calcium fly ash geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(12): 3889-3896 (in Chinese). [19] 王 露, 刘数华. 钙矾石相的研究综述[J]. 混凝土, 2013(8): 83-86+90. WANG L, LIU S H. Research review on ettringite phase[J]. Concrete, 2013(8): 83-86+90 (in Chinese). [20] WANG C Q, TAN K F, XU X X, et al. Effect of activators, admixtures and temperature on the early hydration performance of desulfurization ash[J]. Construction and Building Materials, 2014, 70: 322-331. [21] 白二雷, 许金余, 李 浩, 等. 碱激发剂对矿渣粉煤灰活性激发特性影响试验研究[J]. 科学技术与工程, 2014, 14(1): 96-99. BAI E L, XU J Y, LI H, et al. Experiment study on the stimulating characteristics of slag-fly ash cementitious material system to different alkali-activator[J]. Science Technology and Engineering, 2014, 14(1): 96-99 (in Chinese). [22] 施惠生, 夏 明, 郭晓潞. 粉煤灰基地聚合物反应机理及各组分作用的研究进展[J]. 硅酸盐学报, 2013, 41(7): 972-980. SHI H S, XIA M, GUO X L. Research development on mechanism of fly ash-based geopolymer and effect of each component[J]. Journal of the Chinese Ceramic Society, 2013, 41(7): 972-980 (in Chinese). [23] 南雪丽, 杨 旭, 张 宇, 等. 钢渣-矿渣基胶凝材料的协同水化机理[J]. 建筑材料学报, 2024, 27(4): 366-374. NAN X L, YANG X, ZHANG Y, et al. Synergistic hydration mechanism of steel slag-slag based cementitious material[J]. Journal of Building Materials, 2024, 27(4): 366-374 (in Chinese). [24] 杨 达. 碱激发矿渣/粉煤灰胶凝材料的性能与水化机理研究[D]. 济南: 山东交通学院, 2022. YANG D. Study on properties and hydration mechanism of alkali activated GGBS/FA cementitious material[D]. Jinan: Shandong Jiaotong University, 2022 (in Chinese). [25] 朱庚杰, 朱万成, 齐兆军, 等. 固废基充填胶凝材料配比分步优化及其水化胶结机理[J]. 工程科学学报, 2023, 45(8): 1304-1315. ZHU G J, ZHU W C, QI Z J, et al. Step optimization of a solid waste-based binder for backfill and a study on hydration and cementation mechanism[J]. Chinese Journal of Engineering, 2023, 45(8): 1304-1315 (in Chinese). |