BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2025, Vol. 44 ›› Issue (12): 4567-4580.DOI: 10.16552/j.cnki.issn1001-1625.2025.0624
• Refractory Materials • Previous Articles Next Articles
YANG Qinhao1,2, HE Feng1,2, TIAN Yingliang1,2, ZHAO Zhiyong1,2, GAO Manman1,2, XIE Junlin1,2
Received:2025-06-25
Revised:2025-08-01
Online:2025-12-15
Published:2025-12-30
CLC Number:
YANG Qinhao, HE Feng, TIAN Yingliang, ZHAO Zhiyong, GAO Manman, XIE Junlin. Research Progress on Alkaline Melt Erosion Resistance of Refractory Materials[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(12): 4567-4580.
| [1] AKSEL C. The microstructural features of an alumina-mullite-zirconia refractory material corroded by molten glass[J]. Ceramics International, 2003, 29(3): 305-309. [2] HEUER C, DUDCZIG S, ANEZIRIS C G, et al. Effect of stabilizer and binder on the phase formation in zirconia castables for application in secondary steel industry[J]. Open Ceramics, 2023, 16: 100455. [3] KLUNGHIRUN W, THEERAPAPVISETPONG A, SERIVALSATIT K. Castable refractory materials from magnesium oxychloride cement-bonded cordierite-mullite[J]. Materials Letters, 2024, 375: 137217. [4] SONG Y Y, LIU G Q, LI H X, et al. Influence of ladle purging plug airway on flow properties of liquid steel[J]. Advanced Materials Research, 2012, 472/473/474/475: 2581-2587. [5] ZHOU L M, ZHAO Y J, ZHANG M, et al. Corrosion behavior of coal and biomass mixed ash on high chromia refractory materials at elevated temperatures[J]. Fuel, 2025, 397: 135441. [6] 钱 凡, 李红霞, 郭海荣, 等. 耐火材料的抗碱侵蚀性研究进展[J]. 材料导报, 2024, 38(11): 70-81. QIAN F, LI H X, GUO H R, et al. Research progress on alkali resistant for refractories[J]. Materials Reports, 2024, 38(11): 70-81 (in Chinese). [7] CHEN W B, WANG B, LIU L L, et al. Preparation and slag erosion resistance mechanism of MgAlON based composite refractories synthesized from solid waste[J]. Ceramics International, 2020, 46(16): 26035-26043. [8] HAN G H, WANG Z X, LIU B B, et al. In-situ improved corrosion resistance of corundum-mullite refractory for the incineration of hazardous spent high-salt organic liquor by Cr2O3: interfacial anti-erosion mechanism[J]. Ceramics International, 2022, 48(9): 12395-12407. [9] POCHWAŁA T, KUSIOROWSKI R, ǴLIWA A, et al. Modification of the microstructure of refractory materials by the impregnation process[J]. Ceramics International, 2021, 47(22): 31843-31851. [10] GUZMÁN A M, MARTÍNEZ D I, GONZÁLEZ R. Corrosion-erosion wear of refractory bricks in glass furnaces[J]. Engineering Failure Analysis, 2014, 46: 188-195. [11] WANG H, ZHANG Y Y, SHEN X, et al. Microstructure evolution, mechanical characteristics and erosion behavior of Cr2O3-Al2O3-MgO-ZrO2 refractories in molten reduction slag[J]. Ceramics International, 2024, 50(11): 19502-19514. [12] ZHAO D G, WANG S H, CUI X J, et al. Research on refractory material corrosion in steelmaking engineering[J]. Advanced Materials Research, 2012, 578: 146-149. [13] CHEN L G, GUO M X, SHI H Y, et al. Effect of ZnO level in secondary copper smelting slags on slag/magnesia-chromite refractory interactions[J]. Journal of the European Ceramic Society, 2016, 36(7): 1821-1828. [14] HOU X, DING D H, XIAO G Q, et al. Corrosion mechanism of magnesia-chrome refractory bricks with FetO-SiO2-Cr2O3 copper converter slag[J]. Ceramics International, 2023, 49(10): 15395-15401. [15] SUN Y, LI Y, ZHANG L X, et al. Reaction mechanisms between slag and Ti(C,N)-MgAl2O3-Al2O3 refractories at 1 600 ℃[J]. Ceramics International, 2020, 46(17): 27774-27782. [16] SI Y C, LI H X, SUN H G, et al. High temperature corrosion of SiC-CaAl12O19 composite refractory by coal slag[J]. Corrosion Science, 2022, 206: 110506. [17] ZHAO Y, CAI Y C, LUAN X, et al. Corrosion, permeation and mass transfer mechanisms of alkali metals in corundum refractories[J]. Ceramics International, 2024, 50(18): 33455-33463. [18] GONG Y, GUO Q H, ZHU H W, et al. Refractory failure in entrained-flow gasifier: investigation of partitioned erosion characteristics in an industrial opposed multi-burner gasifier[J]. Chemical Engineering Science, 2019, 210: 115227. [19] JAKOVICS A, MADZHULIS I, FRISHFELDS V, et al. Influence of melt flow and temperature on erosion of refractory and deposit formation in aluminium melting furnaces[J]. Energy Conversion and Management, 2002, 43(3): 345-352. [20] MULEVANOV S V, NARTSEV V M, DOROGANOV V A, et al. Aspects of the corrosion of refractories in structured aggressive media[J]. Refractories and Industrial Ceramics, 2012, 53(4): 226-228. [21] ZHOU Z J, BO Y, ZHANG Y W, et al. Interactions of high-chromia refractory materials with infiltrating coal slag in the oxidizing atmosphere of a cyclone furnace[J]. Ceramics International, 2014, 40(3): 3829-3839. [22] MAEDA E, ARATANI K, KAWAKAMI T, et al. Erosion of sintered Si3N4-Al2O3 and Si3N4-MgAl2O4 by molten blast furnace slag[J]. Journal of the Ceramic Association, Japan, 1981, 89(1026): 74-80. [23] CAI B L, LI H X, ZHAO S X, et al. Corrosion of high chromia refractory materials by basic coal slag under simulated coal gasification atmosphere[J]. Ceramics International, 2018, 44(5): 4592-4602. [24] JANSSON S, BRABIE V, JÖNSSON P. Corrosion mechanism and kinetic behaviour of MgO-C refractory material in contact with CaO-Al2O3-SiO2-MgO slag[J]. Scandinavian Journal of Metallurgy, 2005, 34(5): 283-292. [25] 司国栋, 易 帅, 邓丽娜, 等. 熔铸耐火材料抗盖板玻璃熔体侵蚀行为研究[J]. 硅酸盐通报, 2023, 42(1): 345-351. SI G D, YI S, DENG L N, et al. Corrosion resistance of fused-cast refractory materials by molten cover lens[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(1): 345-351 (in Chinese). [26] CHEN F Y, ZHANG Z, ZENG F M, et al. Pilot-scale treatment of hypersaline coal chemical wastewater with zero liquid discharge[J]. Desalination, 2021, 518: 115303. [27] SHI J X, HUANG W P, HAN H J, et al. Pollution control of wastewater from the coal chemical industry in China: environmental management policy and technical standards[J]. Renewable and Sustainable Energy Reviews, 2021, 143: 110883. [28] SHI Y T, MENG X T, YAO L, et al. A full-scale study of nanofiltration: separation and recovery of NaCl and Na2SO4 from coal chemical industry wastewater[J]. Desalination, 2021, 517: 115239. [29] 郝雅琼, 刘宏博, 迭庆杞, 等. 农药行业废盐产生和利用处置现状及对策建议[J]. 环境工程, 2021, 39(12): 148-152. HAO Y Q, LIU H B, DIE Q Q, et al. Present situation and countermeasures of waste salt production, utilization and disposal in pesticide industry[J]. Environmental Engineering, 2021, 39(12): 148-152 (in Chinese). [30] HAO L. Layer-by-layer assembly of multilayer optical lattices: a theoretical proposal[J]. The European Physical Journal D, 2021, 75(5): 148. [31] LIN C Q, CHI Y, JIN Y Q, et al. Experimental study on molten salt oxidation of high salt content pharmaceutical residue[J]. Procedia Environmental Sciences, 2016, 31: 335-344. [32] NG K K, SHI X Q, TANG M K Y, et al. A novel application of anaerobic bio-entrapped membrane reactor for the treatment of chemical synthesis-based pharmaceutical wastewater[J]. Separation and Purification Technology, 2014, 132: 634-643. [33] ATEŞ A E, BEKTAŞ S, ZENGIİN Ş, et al. Integrated salt and energy recovery from dyeing wastewater via Fenton and photo-Fenton oxidation: industrial approach[J]. Journal of Environmental Chemical Engineering, 2025, 13(2): 115930. [34] 傅忠君, 李韶璞, 黄昊飞, 等. 染料、颜料含盐废水处理与资源化利用工艺技术研究[J]. 上海染料, 2025(1): 1-6. FU Z J, LI S P, HUANG H F, et al. Study on treatment and resource utilization of salt-containing wastewater from dyes and pigment[J]. Shanghai Dyestuffs, 2025(1): 1-6 (in Chinese). [35] 刘 铮, 党春阁, 宋丹娜, 等. 精细化工业园区化工废盐处理问题探究[J]. 化工管理, 2019(6): 153-154. LIU Z, DANG C G, SONG D N, et al. Discussion on the treatment of chemical waste salt in refined industrial park[J]. Chemical Enterprise Management, 2019(6): 153-154 (in Chinese). [36] 罗莉涛, 高 誉, 张鸿涛, 等. 精细化工行业高盐、高浓度有机废水资源化处理集成技术[J]. 科技导报, 2021, 39(17): 17-23. LUO L T, GAO Y, ZHANG H T, et al. On integrated technology for resource treatment of high salinity high concentration organic wastewater in fine chemical industry[J]. Science & Technology Review, 2021, 39(17): 17-23 (in Chinese). [37] 马军强, 孙庚辰, 石 干. 富铝尖晶石对镁质耐火材料抗侵蚀性的影响[J]. 耐火材料, 2001, 35(1): 16-18. MA J Q, SUN G C, SHI G. Effect of aluminum- rich spinel on erosion resistance of magnesia refractories[J]. Refractories, 2001, 35(1): 16-18 (in Chinese). [38] 史幸福, 刘国彦, 王世界, 等. 钢渣碱度对镁碳砖侵蚀速率的影响[J]. 耐火材料, 2018, 52(3): 184-187. SHI X F, LIU G Y, WANG S J, et al. Effect of steel slag alkalinity on erosion rates of magnesia carbon bricks[J]. Refractories, 2018, 52(3): 184-187 (in Chinese). [39] 侯 健, 方 觉, 冯艳平, 等. 广西矿冶炼中超高碱度炉渣对耐火材料的侵蚀性研究[J]. 南方金属, 2009(2): 28-30. HOU J, FANG J, FENG Y P, et al. Erosion of refractory by the ultra-high alkalinity slag produced in smelting ores from Guangxi[J]. Southern Metals, 2009(2): 28-30 (in Chinese). [40] 黄朝晖, 潘 伟, 薛文东, 等. 高炉渣对Sialon-SiC-Al2O3复相耐火材料的侵蚀行为[J]. 稀有金属材料与工程, 2005, 34(增刊1): 532-535. HUANG C H, PAN W, XUE W D, et al. Erosion behavior of blast furnace slag on Sialon-SiC-Al2O3 complex refractories[J]. Rare Metal Materials and Engineering, 2005, 34(supplement 1): 532-535 (in Chinese). [41] 王相辉. 冶金渣对铬刚玉质耐火材料的侵蚀性研究[D]. 武汉: 武汉科技大学, 2019. WANG X H. Study on the corrosiveness of metallurgical slag on chromium corundum refractory materials[D]. Wuhan: Wuhan University of Science and Technology, 2019 (in Chinese). [42] 李 龙, 于景坤, 邹宗树. 含铬耐火材料及其在冶金中的应用[J]. 中国冶金, 2008, 18(6): 11-16+20. LI L, YU J K, ZOU Z S. Cr-containing refractories and its applications in metallurgy[J]. China Metallurgy, 2008, 18(6): 11-16+20 (in Chinese). [43] 陈胜强, 翟祝贺, 茹晓红, 等. 碱性炉渣和粉煤灰砌块的制备及性能研究[J]. 河南建材, 2025(6): 47-49. CHEN S Q, ZHAI Z H, RU X H, et al. Preparation and performance study of alkaline slag and fly ash blocks[J]. Henan Building Materials, 2025(6): 47-49 (in Chinese). [44] NURJAMAN F, SARI Y, MANURUNG P, et al. Study of binary, ternary, and quaternary basicity in reduction of saprolitic nickel ore[J]. Transactions of the Indian Institute of Metals, 2021, 74(12): 3249-3263. [45] SHENDRIK T G, DUNAYEVSKA N I, FATEYEV A I, et al. Phenomena and mechanism of slagging and corrosion in energy use of coal with a high content of salts[J]. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2022(5): 12-19. [46] 邬学军. 熔模精密铸造与耐火材料的几个问题[C]//中国铸造协会精铸分会第七届年会论文集. 2001: 63-64. WU X J. Several problems with investment precision casting and refractories[C]//Proceedings of the 7th Annual Meeting of the Precision Casting Branch of China Foundry Association. 2001: 63-64 (in Chinese). [47] WAGRI N K, CARLBORG M, ERIKSSON M, et al. High temperature interactions between coal ash and MgO-based refractories in lime kiln conditions[J]. Fuel, 2023, 342: 127711. [48] LAO Y G, LI G Q, GAO Y M, et al. Wetting and corrosion behavior of MgO substrates by CaO-Al2O3-SiO2-(MgO) molten slags[J]. Ceramics International, 2022, 48(10): 14799-14812. [49] XU L, CHEN M, WANG N, et al. Corrosion mechanism of MgAl2O4-CaAl4O7-CaAl12O19 composite by steel ladle slag: effect of additives[J]. Journal of the European Ceramic Society, 2017, 37(7): 2737-2746. [50] MUKAI K, TAO Z N, GOTO K, et al. In-situ observation of slag penetration into MgO refractory[J]. Scandinavian Journal of Metallurgy, 2002, 31(1): 68-78. [51] GOTO K, ARGENT B B, LEE W E. Corrosion of MgO:MgAl2O4 spinel refractory bricks by calcium aluminosilicate slag[J]. Journal of the American Ceramic Society, 1997, 80(2): 461-471. [52] QUAN Z H, WANG Z F, LIU H, et al. Effects of different particle size of spinel and Y2O3 additive of the periclase-spinel refractory on the sintering densification and corrosion resistance to copper smelting slag[J]. Ceramics International, 2022, 48(13): 18180-18189. [53] CHENG Y, ZHU T B, LI Y W, et al. Microstructure and properties of MgO-C refractory with different carbon contents[J]. Ceramics International, 2021, 47(2): 2538-2546. [54] 任鑫明, 马北越, 李世明, 等. 典型氧化镁基耐火材料在高碱度渣下的腐蚀和渗透行为[J]. 材料研究与应用, 2020, 14(2): 127-132. REN X M, MA B Y, LI S M, et al. Corrosion and penetration behaviours of high basic slag to typical MgO-basedfractories[J]. Materials Research and Application, 2020, 14(2): 127-132 (in Chinese). [55] 王治峰, 李亚伟, 徐义彪, 等. 铝硅系耐火原料与碱蒸气反应侵蚀行为[J]. 硅酸盐学报, 2022, 50(6): 1694-1700. WANG Z F, LI Y W, XU Y B, et al. Alkali vapor attack behavior of Al2O3-SiO2 refractory raw materials[J]. Journal of the Chinese Ceramic Society, 2022, 50(6): 1694-1700 (in Chinese). [56] 张 巍, 王京阳. 莫来石复合耐火材料的应用进展[J]. 耐火材料, 2024, 58(1): 80-86+92. ZHANG W, WANG J Y. Application progress of mullite composite refractories[J]. Refractories, 2024, 58(1): 80-86+92 (in Chinese). [57] SONG J Q, LIU Y J, LV X M, et al. Corrosion behavior of Al2O3 substrate by SiO2-MgO-FeO-CaO-Al2O3 slag[J]. Journal of Materials Research and Technology, 2020, 9(1): 314-321. [58] WU M H, HUANG A, YANG S, et al. Corrosion mechanism of Al2O3-SiC-C refractory by SiO2-MgO-based slag[J]. Ceramics International, 2020, 46(18): 28262-28267. [59] LI N, VAINIO E, HUPA L, et al. Interaction of high Al2O3 refractories with alkaline salts containing potassium and sodium in biomass and waste combustion[J]. Energy & Fuels, 2018, 32(12): 12971-12980. [60] MAO L Q, GAO B Y, DENG N, et al. Oxidation behavior of Cr(III) during thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides[J]. Chemosphere, 2016, 145: 1-9. [61] CUI K K, MAO H B, ZHANG Y Y, et al. Microstructure and corrosion behavior of Al2O3-Cr2O3 composites with various Cr2O3 content in Al2O3-SiO2-CaO-FeO slag[J]. Ceramics International, 2022, 48(23): 35555-35567. [62] XU T T, XU Y B, LI Y W, et al. Corrosion mechanisms of magnesia-chrome refractories in copper slag and concurrent formation of hexavalent chromium[J]. Journal of Alloys and Compounds, 2019, 786: 306-313. [63] XU L, CHEN M, WANG N, et al. Chemical wear mechanism of magnesia-chromite refractory for an oxygen bottom-blown copper-smelting furnace: a post-mortem analysis[J]. Ceramics International, 2021, 47(2): 2908-2915. [64] 谢永涣, 田 琳. 危废焚烧回转窑用莫来石-氧化锆结合耐火材料[J]. 耐火与石灰, 2023, 48(3): 56-62+66. XIE Y H, TIAN L. Mullite-zirconia composite for the bonding phase of refractory bricks in hazardous waste incineration rotary kiln[J]. Refractories & Lime, 2023, 48(3): 56-62+66 (in Chinese). [65] 刘鹏飞. 氧化锆与氧化铝空心球在耐火材料中的应用及性能分析[J]. 冶金与材料, 2024, 16(6): 124-126. LIU P F. Application and performance analysis of zirconia and alumina hollow spheres in refractories[J]. Metallurgy and Materials, 2024, 16(6): 124-126 (in Chinese). [66] MA C H, LI Y, JIANG P, et al. Corrosion mechanism of postmortem converters slag-blocking ZrO2 sliding gate[J]. Journal of the European Ceramic Society, 2025, 45(1): 116802. [67] ZHAO L, HUANG Q, SUN H Y, et al. Corrosion resistance of partially stabilized zirconia materials to alkaline steel slag[J]. Key Engineering Materials, 2020, 852: 119-128. [68] RENDTORFF N, GARRIDO L, AGLIETTI E. Mullite-zirconia-zircon composites: properties and thermal shock resistance[J]. Ceramics International, 2009, 35(2): 779-786. [69] KHATTAB R M, HANNA S B, ZAWRAH M F, et al. Alumina-zircon refractory materials for lining of the basin of glass furnaces: effect of processing technique and TiO2 addition[J]. Ceramics International, 2015, 41(1): 1623-1629. [70] XUE L, ZHANG T, WANG W. Corrosion behaviors of Al2O3 and ZrO2 refractories in contact with high-basicity refining slag[J]. The Minerals, Metals & Materials Series, 2020: 171-82. [71] WEINBERG A V, GOEURIOT D, POIRIER J, et al. Mullite-zirconia composite for the bonding phase of refractory bricks in hazardous waste incineration rotary kiln[J]. Journal of the European Ceramic Society, 2021, 41(1): 995-1002. [72] HU Z, XU Y B, LI Y W, et al. Role of ZrO2 in sintering and mechanical properties of CaO containing magnesia from cryptocrystalline magnesite[J]. Ceramics International, 2022, 48(5): 6236-6244. [73] KUSIOROWSKI R. Effect of titanium oxide addition on magnesia refractories[J]. Journal of the Australian Ceramic Society, 2020, 56(4): 1583-1593. [74] 聂建华, 王继宝, 曹 锟, 等. 镁锆质耐火材料的性能研究[J]. 武汉科技大学学报, 2008, 31(4): 369-372. NIE J H, WANG J B, CAO K, et al. Properties of MgO-ZrO2 refractory[J]. Journal of Wuhan University of Science and Technology, 2008, 31(4): 369-372 (in Chinese). [75] AKSEL C, AKSOY T. Improvements on the thermal shock behaviour of MgO-spinel composite refractories by incorporation of zircon-3mol% Y2O3[J]. Ceramics International, 2012, 38(5): 3673-3681. [76] WEI C Z, MA C H, LI Y, et al. Controllable preparation and slag corrosion resistance of novel MgO-MgAl2O4-ZrO2 refractory[J]. Ceramics International, 2024, 50(12): 21406-21416. |
| [1] | CHENG Weiwei, TIAN Yingliang, YANG Qinhao, ZHAO Zhiyong, XIE Junlin, HE Feng. Corrosion of Zirconia Refractory Materials by Molten Pharmaceutical Waste Salts [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3426-3434. |
| [2] | QIAO Changtong, YU Chao, DENG Chengji, WANG Xuan, DING Jun, LIU Zhenglong, ZHU Hongxi. Effect of Aluminum Dross on Microstructure and Properties of Low Carbon Al2O3-C Refractory Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1878-1887. |
| [3] | GAO Jie, CHEN Qilong, LIU Cheng, LI Tianqing, FENG Runtang, ZUO Qixiu. Effects of Lightweight Alumina Aggregates on Erosion Mechanisms of Alumina Magnesia Carbon Refractories Used for Impact Zone of Steel Ladle Bottoms [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(11): 4224-4231. |
| [4] | LI Zhonghua, YAN Zhengguo, YANG Wengang, ZHENG Qi, YU Jingkun, YUAN Lei. Preparation and Properties of CaO-Y2O3 Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(4): 1506-1512. |
| [5] | SI Guodong, YI Shuai, DENG Lina, XU Qian, CHEN Meina, WANG Chang’an, PAN Chuancai, LIN Guowei, ZHOU Ji, WEI Xia, XUE Fei, XIE Jinli. Corrosion Resistance of Fused-Cast Refractory Materials by Molten Cover Lens [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(1): 345-351. |
| [6] | GUAN Guohao, WANG Xuezhi, HE Jingjing. Research Progress of Seawater Sea-Sand Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(5): 1483-1493. |
| [7] | HUANG Wei;WANG Shi-ji;CHENG Ming-shu;LI Xian;WANG Xiao-qi;SHEN Tai-yu. Effect of Dry Wet Cycle on Cement Modified Expansive Soil under Erosion Environment [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(2): 649-659. |
| [8] | LI Jian-duo;MA Li-ping;LIU Hong-pan;WANG Rong-mou;CUI Xiao-jing. Preparation of Refractory Material Based on Fly Ash [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2017, 36(5): 1656-1660. |
| [9] | YE Jun;PAN Geng;YANG Jia-song;KAO Hong-tao. Application of Refractories and Secondary Kiln Shells in Reducing Surface Heat Loss of Cement Kiln [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2017, 36(4): 1283-1287. |
| [10] | YUAN Bin;NIU Di-tao;HAO Yang;WANG Jia-bin. Deterioration and Mechanism of Shotcrete under the Combined Action of Salt Lake Brine Erosion and Wetting-Drying Cycles [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2017, 36(2): 607-613. |
| [11] | CONG Pei-yuan;DONG Li;LI Peng;SHAO Xiao-ping;TANG Rong-liang. Hot Repairing Technology of the Refractory Lining in Hot Blast Stove [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2015, 34(6): 1644-1647. |
| [12] | CHEN Guang-yuan;LI A-peng;YANG Hua-ming. Research Progress on Lightweight Refractory Prepared from Industrial Waste [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2014, 33(9): 2285-2289. |
| [13] | CAO Jing;YU Zai-xi;LIU Hai-ming. Experimental Study on Erosion Mechanism of Salicylic Acid to Red Clay-Cemented Soil Complex [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2014, 33(5): 1008-1012. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||