[1] 金 浏, 张仁波, 杜修力, 等. 温度对混凝土结构力学性能影响的研究进展[J]. 土木工程学报, 2021, 54(3): 1-18. JIN L, ZHANG R B, DU X L, et al. Research progress on the influence of temperature on the mechanical performance of concrete structures[J]. China Civil Engineering Journal, 2021, 54(3): 1-18 (in Chinese). [2] 蒋春霞. 高温下混凝土抗拉抗压力学性能解析[J]. 现代盐化工, 2020, 47(4): 51-52. JIANG C X. Analysis of tensile and compressive mechanical properties of concrete at high temperature[J]. Modern Salt and Chemical Industry, 2020, 47(4): 51-52 (in Chinese). [3] 苗生龙, 李庆涛, 赵园园, 等. 高温后纳米SiO2混凝土力学性能试验研究[J]. 应用基础与工程科学学报, 2021, 29(4): 999-1006. MIAO S L, LI Q T, ZHAO Y Y, et al. Experimental study on mechanical properties of nano-SiO2 concrete after high temperature[J]. Journal of Basic Science and Engineering, 2021, 29(4): 999-1006 (in Chinese). [4] 申海洋, 刘凌晖, 任 磊. 高温作用下轻骨料混凝土力学性能研究[J]. 铁道科学与工程学报, 2022, 19(10): 2976-2983. SHEN H Y, LIU L H, REN L. Study on mechanical properties of lightweight aggregate concrete under high temperature[J]. Journal of Railway Science and Engineering, 2022, 19(10): 2976-2983 (in Chinese). [5] 俞可权, 商兴艳, 陆洲导. 高温后混凝土断裂韧度阻力曲线的权函数求解[J]. 同济大学学报(自然科学版), 2014, 42(4): 499-504+557. YU K Q, SHANG X Y, LU Z D. Determination of residual crack extension resistance of post-fire concrete by weight function method[J]. Journal of Tongji University (Natural Science), 2014, 42(4): 499-504+557 (in Chinese). [6] 商兴艳, 俞可权, 陆洲导. 高温后混凝土断裂能的确定[J]. 中南大学学报(自然科学版), 2014, 45(2): 589-595. SHANG X Y, YU K Q, LU Z D. Determination of residual fracture energy of concrete subjected to elevated temperature[J]. Journal of Central South University (Science and Technology), 2014, 45(2): 589-595 (in Chinese). [7] 杜红秀, 樊亚男. 基于X-CT的C60高性能混凝土高温细观结构损伤研究[J]. 建筑材料学报, 2020, 23(1): 210-215. DU H X, FAN Y N. Meso-structure damage of C60 high performance concrete at high temperature based on X-CT[J]. Journal of Building Materials, 2020, 23(1): 210-215 (in Chinese). [8] YU K Q, YU J T, LU Z D, et al. Fracture properties of high-strength/high-performance concrete (HSC/HPC) exposed to high temperature[J]. Materials and Structures, 2016, 49(11): 4517-4532. [9] XIANG S, ZENG L, ZHANG J C, et al. A DIC-based study on compressive responses of concrete after exposure to elevated temperatures[J]. Materials, 2019, 12(13): 2044. [10] 中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程: JGJ 55—2011[S]. 北京: 中国建筑工业出版社, 2011. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Specification for mix proportion design of ordinary concrete: JGJ 55—2011[S]. Beijing: China Architecture & Building Press, 2011 (in Chinese). [11] 霍静思, 韩林海. ISO-834标准火灾作用后钢管混凝土轴压刚度和抗弯刚度的研究[J]. 工业建筑, 2004, 34(1): 21-25+28. HUO J S, HAN L H. Research on the axial and flexural rigidity of concrete-filled steel tubes after exposure to ISO-834 standard fire[J]. Industrial Construction, 2004, 34(1): 21-25+28 (in Chinese). [12] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019. Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration for Market Regulation. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019 (in Chinese). [13] 卿龙邦, 曹国瑞, 管俊峰. 基于DIC方法的混凝土允许损伤尺度试验研究[J]. 工程力学, 2019, 36(10): 115-121. QING L B, CAO G R, GUAN J F. Experimental investigation of the concrete permissible damage scale based on the digital image correlation method[J]. Engineering Mechanics, 2019, 36(10): 115-121 (in Chinese). [14] TEKIELI M, DE SANTIS S, DE FELICE G, et al. Application of digital image correlation to composite reinforcements testing[J]. Composite Structures, 2017, 160: 670-688. [15] 赵志航. 基于DIC的往复荷载下混凝土断裂特性研究[D]. 重庆: 重庆交通大学, 2022. ZHAO Z H. Fracture characteristics of concrete under reciprocating load based on DIC[D].Chongqing: Chongqing Jiaotong University, 2022 (in Chinese). [16] 潘 兵. 数字图像相关方法基本理论和应用研究进展[C]//中国科协第235次青年科学家论坛: 极端复杂测试环境下实验力学的挑战与应对. 北京, 2011: 74-79. PAN B. Research progress on basic theory and application of digital image correlation method[C]//The 235th young scientists forum of cast: chance and challenge for experimental mechanics under extremely complex conditions. Beijing, 2011: 74-79 (in Chinese). [17] 何华俊, 朱建霆. 高温下混凝土微结构损伤劣化研究综述展望[C]//开展消防科技创新 促进社会公共安全. 2017: 323-330. HE H J, ZHU J T. Review of research on damage and deterioration of concrete micro-structure at high temperature[C]//Carry out fire science and technology innovation and promote social public safety. 2017: 323-330 (in Chinese). [18] 肖建庄, 刘良林, 董毓利, 等. 高性能混凝土高温爆裂研究进展[J]. 建筑科学与工程学报, 2019, 36(3): 1-15. XIAO J Z, LIU L L, DONG Y L, et al. Progress of study on explosive spalling of high performance concrete at elevated temperatures[J]. Journal of Architecture and Civil Engineering, 2019, 36(3): 1-15 (in Chinese). [19] MA Q M, GUO R X, ZHAO Z M, et al. Mechanical properties of concrete at high temperature: a review[J]. Construction and Building Materials, 2015, 93: 371-383. [20] 王 磊, 赵燕茹, 郝 松. 高温后混凝土初始压实阶段应力-应变关系[J]. 硅酸盐通报, 2021, 40(11): 3627-3633+3653. WANG L, ZHAO Y R, HAO S. Stress-strain relationship of concrete after high temperature in initial compaction stage[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(11): 3627-3633+3653 (in Chinese). |