[1] ARORA A, ALMUJADDIDI A, KIANMOFRAD F, et al. Material design of economical ultra-high performance concrete (UHPC) and evaluation of their properties[J]. Cement and Concrete Composites, 2019, 104: 103346. [2] 杨博文, 戴 磊, 金鹭云, 等. 超高性能混凝土(UHPC)研究综述[J]. 建筑技术, 2020, 51(12): 1422-1425. YANG B W, DAI L, JIN L Y, et al. Review of research on ultra-high performance concrete[J]. Architecture Technology, 2020, 51(12): 1422-1425 (in Chinese). [3] 黄维蓉, 杨玉柱, 崔 通, 等. 含粗骨料超高性能混凝土收缩变形性能的研究[J]. 混凝土, 2021(8): 99-103. HUANG W R, YANG Y Z, CUI T, et al. Study on the workability and mechanical properties of ultra-high performance concrete containing coarse aggregate[J]. Concrete, 2021(8): 99-103 (in Chinese). [4] 史占崇, 苏庆田, 邵长宇, 等. 粗骨料UHPC的基本力学性能及弯曲韧性评价方法[J]. 土木工程学报, 2020, 53(12): 86-97. SHI Z C, SU Q T, SHAO C Y, et al. Basic mechanical behavior and flexural toughness evaluation method of coarse aggregate UHPC[J]. China Civil Engineering Journal, 2020, 53(12): 86-97 (in Chinese). [5] LI P P, YU Q L, BROUWERS H J H. Effect of coarse basalt aggregates on the properties of ultra-high performance concrete (UHPC)[J]. Construction and Building Materials, 2018, 170: 649-659. [6] AMIN M, TAYEH B A, AGWA I S. Effect of using mineral admixtures and ceramic wastes as coarse aggregates on properties of ultrahigh-performance concrete[J]. Journal of Cleaner Production, 2020, 273: 123073. [7] 李文旭, 马昆林, 龙广成, 等. 自密实混凝土拌合物稳定性动态监测及数值模拟研究进展[J]. 材料导报, 2019, 33(13): 2206-2213. LI W X, MA K L, LONG G C, et al. Stability dynamic monitoring and simulation of self-compacting concrete: a review[J]. Materials Reports, 2019, 33(13): 2206-2213 (in Chinese). [8] ESMAEILKHANIAN B, DIEDERICH P, KHAYAT K H, et al. Influence of particle lattice effect on stability of suspensions: application to self-consolidating concrete[J]. Materials and Structures, 2016, 50(1): 39. [9] 王 振, 李化建, 易忠来, 等. 自密实混凝土稳定性机理及其影响因素研究新进展[J]. 材料导报, 2017, 31(增刊1): 379-383. WANG Z, LI H J, YI Z L, et al. Research progress on stability mechanism and influencing factors of self-compacting concrete[J]. Materials Reports, 2017, 31(supplement 1): 379-383 (in Chinese). [10] 张丽辉, 刘加平, 周华新, 等. 粗骨料与钢纤维对超高性能混凝土单轴拉伸性能的影响[J]. 材料导报, 2017, 31(23): 109-114. ZHANG L H, LIU J P, ZHOU H X, et al. Effects of coarse aggregate and steel fiber on uniaxial tensile property of ultra-high performance concrete[J]. Materials Review, 2017, 31(23): 109-114 (in Chinese). [11] KANG S T, KIM J K. Investigation on the flexural behavior of UHPCC considering the effect of fiber orientation distribution[J]. Construction and Building Materials, 2012, 28(1): 57-65. [12] 张倩倩, 刘建忠, 周华新, 等. 超高性能混凝土流变特性及其对纤维分散性的影响[J]. 材料导报, 2017, 31(23): 73-77. ZHANG Q Q, LIU J Z, ZHOU H X, et al. Rheological properties of ultra-high performance concrete and its effect on the fiber dispersion within the material[J]. Materials Review, 2017, 31(23): 73-77 (in Chinese). [13] 程 俊, 刘加平, 张丽辉. 含粗骨料超高性能混凝土单轴拉伸性能及机理分析[J]. 混凝土与水泥制品, 2015(12): 1-5. CHENG J, LIU J P, ZHANG L H. Properties of uniaxial tensile of ultra-high performance concrete containing coarse aggregate and mechanical analysis[J]. China Concrete and Cement Products, 2015(12): 1-5 (in Chinese). [14] 黄维蓉, 杨玉柱, 刘延杰, 等. 含粗骨料超高性能混凝土的力学性能[J]. 硅酸盐学报, 2020, 48(11): 1747-1755. HUANG W R, YANG Y Z, LIU Y J, et al. Mechanical properties of ultra-high performance concrete containing coarse aggregate[J]. Journal of the Chinese Ceramic Society, 2020, 48(11): 1747-1755 (in Chinese). [15] 郑晓博, 韩方玉, 刘建忠, 等. 粗骨料超高性能混凝土流变与稳定性[J]. 硅酸盐学报, 2022, 50(11): 2844-2854. ZHENG X B, HAN F Y, LIU J Z, et al. Rheological properties and stability of ultra-high performance concrete containing coarse aggregate[J]. Journal of the Chinese Ceramic Society, 2022, 50(11): 2844-2854 (in Chinese). [16] LI L J, XU L H, HUANG L, et al. Compressive fatigue behaviors of ultra-high performance concrete containing coarse aggregate[J]. Cement and Concrete Composites, 2022, 128: 104425. [17] LIU J Z, HAN F Y, CUI G, et al. Combined effect of coarse aggregate and fiber on tensile behavior of ultra-high performance concrete[J]. Construction and Building Materials, 2016, 121: 310-318. [18] KOURA B I O, HOSSEINPOOR M, YAHIA A. Coupled effect of fine mortar and granular skeleton characteristics on dynamic stability of self-consolidating concrete as a diphasic material[J]. Construction and Building Materials, 2020, 263: 120131. [19] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 活性粉末混凝土: GB/T 31387—2015[S]. 北京: 中国标准出版社, 2015. General Administration of Quality Supervision, Inspection and Quarantine, Standardization Administration, the People’s Republic of China. Reactive powder concrete: GB/T 31387—2015[S]. Beijing: Standard Press of China, 2015 (in Chinese). [20] 武 斌, 安晓鹏, 史才军, 等. 混凝土流变特性对其稳定性及浇筑后外观质量的影响[J]. 材料导报, 2020, 34(4): 4043-4048. WU B, AN X P, SHI C J, et al. Effect of rheological properties on stability and appearance of cast concrete[J]. Materials Reports, 2020, 34(4): 4043-4048 (in Chinese). [21] WANG R, GAO X J, HUANG H H, et al. Influence of rheological properties of cement mortar on steel fiber distribution in UHPC[J]. Construction and Building Materials, 2017, 144: 65-73. [22] LI K K, LENG Y, XU L L, et al. Rheological characteristics of ultra-high performance concrete (UHPC) incorporating bentonite[J]. Construction and Building Materials, 2022, 349: 128793. [23] 王圣杰, 李 兵, 李传习, 等. 超高性能混凝土流动性与流变性关系[J]. 硅酸盐学报, 2023, 51(8): 1962-1970. WANG S J, LI B, LI C X, et al. Flowability and rheological properties of ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society, 2023, 51(8): 1962-1970 (in Chinese). [24] YU R, XU L L, LI K K, et al. Dynamic behaviors assessment of steel fibres in fresh ultra-high performance concrete (UHPC): experiments and numerical simulations[J]. Journal of Building Engineering, 2022, 59: 105084. [25] 张秀芝, 毕梦迪, 刘同军, 等. 钢纤维混凝土中纤维分布特性影响因素研究进展[J]. 硅酸盐学报, 2021, 49(8): 1732-1742. ZHANG X Z, BI M D, LIU T J, et al. Research progress in factors affecting fiber distribution in steel fiber concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(8): 1732-1742 (in Chinese). [26] 高 珍, 曾 力, 刘军鹏. 骨料粒径对自密实混凝土离析的影响研究[J]. 西北水电, 2014(6): 50-53. GAO Z, ZENG L, LIU J P. Study of impacts by aggregate size on segregation of self-compaction concrete[J]. Northwest Hydropower, 2014(6): 50-53 (in Chinese). [27] ROUSSEL N. A theoretical frame to study stability of fresh concrete[J]. Materials and Structures, 2006, 39(1): 81-91. [28] 汪玺玥. 超高性能水泥基材料流变行为及机理研究[D]. 南京: 东南大学, 2020: 63-69. WANG X Y. Study on rheological behavior and mechanism of ultra-high performance cement-based materials[D]. Nanjing: Southeast University, 2020: 63-69 (in Chinese). [29] GOLTERMANN P, JOHANSEN V, PALBØL L. Packing of aggregates: an alternative tool to determine the optimal aggregate mix[J]. ACI Materials Journal, 1997, 94(5): 435-443. [30] RODIN G J. Squeeze film between two spheres in a power-law fluid[J]. Journal of Non-Newtonian Fluid Mechanics, 1996, 63(2/3): 141-152. |