[1] 任 超, 倪 文, 王勇华. 湿选钢渣尾泥的机械活化及其在混凝土中的应用[J]. 混凝土, 2023(2): 114-118. REN C, NI W, WANG Y H. Mechanical activation of wet sorted steel slag mud and its application in concrete[J]. Concrete, 2023(2): 114-118 (in Chinese). [2] 张 涛, 陈铁军, 陈永亮, 等. 机械活化和不锈钢渣掺量对矿渣胶凝材料性能的影响[J]. 硅酸盐通报, 2022, 41(2): 553-561. ZHANG T, CHEN T J, CHEN Y L, et al. Effects of mechanical activation and stainless steel slag content on properties of slag cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 553-561 (in Chinese). [3] 梁志鹏, 孙 畅, 毕万利, 等. 高硅型铁尾矿机械活化效果及机理研究[J]. 硅酸盐通报, 2022, 41(8): 2810-2818. LIANG Z P, SUN C, BI W L, et al. Mechanical activation of high silicon iron tailings and its mechanism[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(8): 2810-2818 (in Chinese). [4] 张晓林, 夏光华, 曹 文. 机械活化强化二氧化硫脲漂白高岭土的试验研究[J]. 硅酸盐通报, 2016, 35(4): 1053-1056+1073. ZHANG X L, XIA G H, CAO W. Bleaching kaolin with thiourea dioxide strengthened by mechanical activation[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(4): 1053-1056+1073 (in Chinese). [5] 李城林, 张 超, 李润国, 等. 热活化中级铝硅比煤矸石对复合水泥性能及水化的影响[J]. 西南科技大学学报, 2023, 38(3): 8-15. LI C L, ZHANG C, LI R G, et al. Mass ratio on the performance and hydration of compound cement[J]. Journal of Southwest University of Science and Technology, 2023, 38(3): 8-15 (in Chinese). [6] 胡 彪, 李先海, 晏祥政, 等. 热活化煤矸石粉对基体-骨料界面过渡区性能的影响[J]. 硅酸盐通报, 2023, 42(4): 1315-1322. HU B, LI X H, YAN X Z, et al. Influence of thermal activated coal gangue powder on properties of interface transition zone between matrix and aggregate[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1315-1322 (in Chinese). [7] 杜晓伟, 刘 辉, 李文举, 等. 掺加热活化油页岩半焦混凝土的耐久性[J]. 硅酸盐通报, 2023, 42(4): 1428-1436+1465. DU X W, LIU H, LI W J, et al. Durability of heat activated oil shale semi-coke concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1428-1436+1465 (in Chinese). [8] ZHANG L J, HE Y, LÜ P, et al. Comparison of microwave and conventional heating routes for kaolin thermal activation[J]. Journal of Central South University, 2020, 27(9): 2494-2506. [9] 盖珂瑜, 王桂明, 孙 涛, 等. 水洗高岭土活化特性及评价方法[J]. 硅酸盐通报, 2020, 39(11): 3601-3608. GE K Y, WANG G M, SUN T, et al. Activation characteristics and evaluation of water-washed kaolin[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(11): 3601-3608 (in Chinese). [10] 盖珂瑜. 不同成因高岭土热活化特性比较研究[D]. 武汉: 武汉理工大学, 2019. GE K Y. Comparative study on thermal activation characteristic of kaolin with different origins[D].Wuhan: Wuhan University of Technology, 2019 (in Chinese). [11] CASTILLO L A, BARBOSA S E, MAIZA P, et al. Surface modifications of talcs. Effects of inorganic and organic acid treatments[J]. Journal of Materials Science, 2011, 46(8): 2578-2586. [12] STEUDEL A, BATENBURG L F, FISCHER H R, et al. Alteration of swelling clay minerals by acid activation[J]. Applied Clay Science, 2009(44): 95-104. [13] 欧 延, 林敬东, 陈文瑞, 等. 酸改性高岭土的结构与性能的研究[J]. 厦门大学学报(自然科学版), 2004, 43(2): 272-274. OU Y, LIN J D, CHEN W R, et al. A study on structure and characteristic of acid-modified kaolin[J]. Journal of Xiamen University (Natural Science), 2004, 43(2): 272-274 (in Chinese). [14] 徐晓燕. 复合有机酸活化高岭土及其在陶瓷工业上的应用研究[D]. 广州: 华南理工大学, 2014. XU X Y. Kaolinite modified by compound organic acids and its application in ceramic industry[D].Guangzhou: South China University of Technology, 2014 (in Chinese). [15] 彭 能. 有机酸活化高岭土及其在碱激发胶凝材料中的应用研究[D]. 武汉: 湖北大学, 2018. PENG N. Application of organic acid to kaolin and its application in alkali activated cementitious materials[D].Wuhan: Hubei University, 2018 (in Chinese). [16] LIN S M, YU Y L, ZHANG Z J, et al. The synergistic mechanisms of citric acid and oxalic acid on the rapid dissolution of kaolinite[J]. Applied Clay Science, 2020, 196: 105756. |